Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фотограмметрия .doc
Скачиваний:
36
Добавлен:
21.09.2019
Размер:
9.63 Mб
Скачать

16. Назначение и области применения цифрового трансформирования снимков

Трансформированием снимков в фотограмметрии называют процесс преобразования исходного снимка объекта в изображение объекта в заданной проекции.

При цифровом трансформировании исходный снимок представляет собой цифровое изображение, получаемое или непосредственно цифровой съемочной системой или путем преобразования аналогового снимка в цифровую форму на сканере.

Основными областями применения цифрового трансформирования являются топография и картография.

При создании и обновлении карт различного назначения по аэрокосмическим снимкам создаются трансформированные изображения местности в проекции карты. Эти изображения могут быть созданы по одиночным снимкам или по нескольким перекрывающимся снимкам. Цифровое трансформирование выполняется с точностью, соответствующей точности предъявляемой действующими нормативными документами к точности карт соответствующего масштаба.

Цифровые трансформированные изображения используют для создания контурной части карт, путем векторизации цифровых изображений в среде CAD или ГИС, а также как самостоятельные картографические документы. В частном случае, если при трансформировании снимков не учитывается влияние кривизны Земли и проекции карты на положение контуров, трансформированное изображение представляет собой ортогональную проекцию местности на горизонтальную плоскость. Такой вид трансформирования называется ортофототрансформированием.

Помимо топографии и картографии, цифровое трансформирование используется для создания по исходным снимкам перспективных изображений местности из заданных точек пространства. Такие изображения используют в военной области, например, в летных тренажерах и в архитектуре - при проектировании различных сооружений.

Цифровое трансформирование применяют также для преобразования стереопар исходных снимков в стереопару снимков идеального случая съемки в системе координат фотограмметрической модели. Такое преобразование выполняется в цифровых стереофотограмметрических системах.

17. Наблюдение и измерение цифровых изображений

Цифровое изображение хранится в памяти компьютера, в общем случае, в виде прямоугольной матрицы, элементы которой содержат информацию об оптических плотностях или цвете элементарных участков изображения ( пикселей ), а номера i строки и j столбца элемента определяют его положение в матрице. Нумерация строк и столбцов матрицы цифрового изображения начинается с нуля.

Р ис.1.1.1

Координаты центров пикселей в левой прямоугольной системе координат цифрового изображения оCxCуC.(рис.1.1.1), началом которой является левый верхний угол цифрового изображения, определяются в, так называемых, пиксельных координатах (единицей измерения в этом случае является пиксель).

Пиксельные координаты центров пикселей в системе координат цифрового изображения оCхCуC определяют по формулам:

. (1.1.1)

Для получения подпиксельной (субпиксельной) точности можно увеличить матрицу изображения на экране монитора относительно исходного цифрового изображения. В этом случае каждый пиксель исходного изображения будет изображаться матрицей n×n пикселей, численные значения всех элементов a'ij которой будут равны численному значению элемента матрицы исходного изображения.

П иксельные координаты точек увеличенного изображения можно измерить с точностью до 1/n пикселя исходного изображения (рис.1.1.2.).

Рис. 1.1.2

Пиксельные координаты (в пикселях исходного изображения) элемента a'ij увеличенного изображения определяют по формулам:

, 1.

в которых: i,j - номера строки и столбца элемента матрицы исходного изображения, в котором находится элемент a'ij увеличенного изображения:

i’,j’ - номера строки и столбца элемента a`ij подматрицы n×n;

n – коэффициент увеличения изображения.

Значения физических координат центров пикселей цифрового изображения можно определить по значениям их пиксельных координат, если известны физические размеры стороны пикселя изображения Δ (предполагается, что пиксель имеет форму квадрата).

Значения физических координат определяют по формулам:

. (1.3)

В некоторых цифровых системах начало системы координат цифрового изображения оC хC уC выбирают в центре пикселя, расположенного в верхнем левом углу цифрового изображения.

В этом случае значения пиксельных координат вычисляют по формулам:

(1.4)

Рассмотренный выше метод измерения цифрового изображения с подпиксельной точностью требует его увеличения на экране дисплея компьютера. Однако, даже при увеличении цифрового изображения только в два раза, на экране дисплея исходный аналоговый снимок изображается с весьма значительным оптическим увеличением. Так, например, снимок, преобразованный на сканере, с размером пикселя 14 мкм на экране дисплея с размером зерна 0.28 мм при увеличении цифрового изображения снимка в 2 раза имеет оптическое увеличение 40 раз. Такое увеличение приводит к значительному ухудшению изобразительных свойств наблюдаемого изображения и, как следствие, к снижению точности наведения измерительной марки на измеряемые объекты на изображении.

С целью обеспечения возможности измерения координат точек цифрового изображения с подпиксельной точностью без увеличения исходного изображения разработан метод измерения цифровых изображений, в котором цифровое изображение снимка может смещаться относительно неподвижной измерительной марки с шагом в n – раз меньшим размера пикселя.

Принцип измерения координат точек цифрового изображения по этому методу иллюстрируется на рис. 1.3 и 1.4.

Рис. 1.3 Рис. 1.4

На рисунке 1.3 представлен фрагмент исходного цифрового изображения с измерительной маркой и точкой изображения m, координаты которой необходимо измерить. Как следует из рис.1.3 центр изображения измерительной марки не совпадает с изображением точки m, причем разности значений их пиксельных координат составляют величины xP и yP.

Для совмещения центра изображения измерительной марки с точкой m можно создать фрагмент цифрового изображения снимка, в котором координаты начала системы координат o’C x’C y’C будут иметь значения , а .

Создание такого фрагмента цифрового изображения производится следующим образом. По координатам центра каждого пикселя фрагмента изображения x’pi, y’pi определяют значения координат его проекции xpi, ypi в системе координат оC хC уC исходного изображения.

Их значения определяют по формулам:

. (1.6)

Затем по значениям координат xpi, ypi находят ближайшие к изображению точки i, соответствующей центру пикселя создаваемого фрагмента цифрового изображения, четыре пикселя исходного цифрового изображения, например, M, K, L, N (рис.1.5)

Далее методом билинейного интерполирования определяют значения оптической плотности i-го пикселя создаваемого фрагмента изображения по формуле:

, (1.7)

в которой

.

Таким же образом формируются все элементы создаваемого фрагмента цифрового изображения.

На экране дисплея, на визуализированном фрагменте созданного цифрового изображения центр измерительной марки будет совмещен с изображением точки m. Пиксельные координаты точки m изображения в системе координат исходного изображения определяются по формулам 1.6.

Необходимо отметить, что создание фрагмента цифрового изображения требует значительных вычислительных процедур. Поэтому для достижения эффекта перемещения изображения на экране дисплея относительно марки в “реальном масштабе” времени фрагмент изображения не должен иметь большие размеры.

В случае если для измерений используются цветные цифровые изображения при формировании элементов создаваемого изображения методом билинейного трансформирования по формулам 1.7. определяются интенсивности красного (R), зеленого (G) и синего (В) компонентов цветного изображения.