Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
52,53,54 Биохимия.docx
Скачиваний:
7
Добавлен:
21.09.2019
Размер:
200.87 Кб
Скачать

54. Ассимиляция азота и нитратов растениями.

Азот входит в состав аминокислот, амидов, белков, нуклеиновых кис-т, нуклеотидов и многих других жизненно важных органических соединений. Для растений азот является самым дефицитным элементом питания. Поэтому в обмене веществ азот используется растениями очень экономно. У растительных организмов в продуктах выделения практически нет азотистых веществ. Процессы распада азотистых соединений в растительных клетках завершаются образованием аммиака, который может сразу же реутилизироваться. При недостатке азота тормозится рост растений, ослабляется образование боковых побегов и кущение у злаков, наблюдается мелколистность. Одновременно уменьшается ветвление корней, однако при этом соотношение массы корневой системы к надземной части может возрастать. Длительное азотное голодание приводит к гидролизу белков и разрушению хлорофилла в нижних листьях и оттоку образующихся азотных соединений к молодым тканям. Дефицит азота ускоряет развитие растения и созревание семян. Корни растений способны поглощать из почвы азот в форме аниона N03- и катиона NH4+. Основными же формами азота на Земле являются прочно связанный азот литосферы и молекулярный азот (N2) атмосферы. Ион N03- очень подвижен, вымывается в глубокие слои почвы и может попадать в водоемы. Содержание нитратов в почве особенно возрастает весной, когда создаются благоприятные условия для деятельности нитрифицирующих бактерий. Катион NH4+ в почве менее подвижен, хорошо адсорбируется на почвенных коллоидах, меньше вымывается, его концентрация в почвенном растворе значительно выше, чем нитрата. Превращение азота в почве микроорганизмами. При возделывании сельскохозяйственных культур запасы азота в почве можно пополнить за счет минеральных удобрений. В естественник же условиях это осуществляется различными группами микроорганизмов, одни из которых способны превращать недоступный для растений органический азот в форму NH4+ и N03-, а другие связывают молекулярный азот атмосферы. Процесс разложения органических азотистых соединений гетеротрофными микроорганизмами и превращение их в минеральную форму азота называется Аммонификацией. Бактерии-аммонификаторы используют в качестве источника углерода и энергии аминокислоты. Нитрифицирующие Бактерии получают энергию за счет окисления восстановленных форм азота (аммиак, азотистая кислота). Процесс нитрификации идет в два этапа и осуществляется двумя группами микроорганизмов. Одни окисляют аммиак до азотистой кислоты, а другие окисляют нитрит до нитрата. Нитрификаторы окисляют и аммонийный азот удобрений, переводя его в нитратную форму. Содержание доступного растениям азота в почве определяется не только процессами аммонификации, нитрификации, азотфиксации и вымыванием его из почвы, но и потерями его в ходе процесса Денитрификации. Процесс денитрификации осуществляется анаэробными прокариотами, которые способны восстанавливать N03- до NO2- и газообразных форм азота (N2O, N2).

Первичный синтез аминокислот.

. Прямое аминирование и переаминирование. Аминотрансферазы.

Аминотрансферазы (трансаминазы) — ферменты, катализирующие межмолекулярный перенос аминогруппы от соответствующих аминокислот на a‑кетокислоты (2‑оксокислоты) с образованием новых кето- и аминокислот без образования свободного аммиака, в качестве кофермента используется витамин В6 (пиридоксин). Эти ферменты играют центральную роль в обмене белков, осуществляя окислительное дезаминирование аминокислот опосредованно через глутаминовую кислоту. Образующаяся глутаминовая кислота дезаминируется глутаматдегидрогеназой с освобождением свободного аммиака и 2‑оксоглутаровой кислоты.

В организме человека наибольшее значение имеют две аминотрансферазы: аспартатаминотрансфераза (АСТ или АсАТ) (L‑аспартат:2‑оксоглутарат-аминотрансфераза, КФ 2.6.1.1.) и аланинаминотрансфераза (АЛТ или АлАТ), (L‑аланин:2‑оксоглутарат-аминотрансфераза, КФ 2.6.1.2.). В клинической практике чаще всего определяют именно активность этих двух ферментов. Существует также другое название указанных ферментов: для АСТ — глутаматоксалоацетатаминотрансфераза (ГОАТ), для АЛТ — глутаматпируватамино­трансфераза (ГПАТ). Ниже приведены реакции, катализируемые этими ферментами:

2-Оксоглутарат + Аспартат ↔ Глутамат + Оксалоацетат

2-Оксоглутарат + Аланин ↔ Глутамат + Пируват

Наибольшая активность АСТ обнаружена в миокарде, затем в порядке убывания в печени, скелетных мышцах, головном мозге, почках. Активность фермента в миокарде в 10000 раз выше, чем в сыворотке крови. Фермент является димером, имеет изоферменты: положительно заряженный митохондриальный с ММ=93 кД и отрицательно заряженный цитозольный с ММ=92 кД. Активность АЛТ максимальна в печени, среди других органов убывает в последовательности: поджелудочная железа, сердце, скелетные мышцы, селезенка, легкие. Фермент также имеет цитозольный и митохондриальный изоферменты, однако последний содержится в минимальном количестве и нестабилен. Избирательная тканевая локализация позволяет считать трансаминазы маркерными ферментами: АСТ для миокарда, АЛТ для печени. Соотношение активности аминотрансфераз позволяет судить о глубине повреждения клеток: АЛТ преимущественно локализована в цитоплазме, АСТ — в цитоплазме и в митохондриях.

ПЕРЕАМИНИРОВАНИЕ, транс-аминирование, обратимый перенос аминогруппы (-NH2) от аминокислот или аминов к оксокислотам:

Реакция ферментативного П., открытая в 1937 сов. биохимиками А. Е. Браунштейном и М. Г. Крицман, играет роль важного промежуточного звена в процессах синтеза и дезаминирования мн. аминокислот у животных, растений и микроорганизмов. Большинство природных аминокислот синтезируется в тканях путём переноса NH2-группы от глутаминовой кислоты - начального продукта усвоения азота-на различные оксокислоты. Обеспечивая быстрое взаимопревращение различных амино- и оксокислот, реакции П. играют важную роль в регуляции и сопряжении обмена аминокислот и углеводов. Ферменты П.- аминотрансферазы имеются во всех живых клетках. Описано св. 55 различных аминотрансфераз, катализирующих П. всех известных природных аминокислот и ряда биогенных аминов. Коферментом аминотрансфераз является производное витамина В6 - пиридоксальфосфат, играющий роль переносчика NH2-группы (о механизме П. см. Пиридоксалевые ферменты). Резкое повышение содержания нек-рых аминотрансфераз в плазме крови больных служит диагностич. признаком при поражениях печени (гепатиты), сердца (инфаркт миокарда), мышц (травмы, миодистрофич. заболевания).

АМИНИРОВАНИЕ, метод введения аминогруппы -NH2 в различные органич. соединения. Типичный пример А.- действие амидов щелочных металлов на гете-роциклич. основания. Так, взаимодействие пиридина с амидом натрия при темп-ре ок. 200°С ведёт к образованию а-аминопиридина (А. Е. Чичибабин и О. А. Зейде, 1914):

При пропускании паров бензола с аммиаком через накалённую трубку образуется (с очень низким выходом) анилин: