Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курсовой проект ОППиС.docx
Скачиваний:
4
Добавлен:
20.09.2019
Размер:
865.17 Кб
Скачать

Министерство образования и науки Российской Федерации

Рязанский государственный радиотехнический университет

Кафедра информационно-измерительной и биомедицинской техники

Курсовой проект

по дисциплине:

«Основы проектирования приборов и систем»

на тему:

«Система измерения фазовых сдвигов»

Выполнил:

Студент группы 934

Любанов Д.О.

Проверил: Заведующий по учебной части Жулёв В.И.

Рязань 2012

Введение

учебной части

Жулев И.В.

Значительное расширение функциональных возможностей, повышение надежности и некоторых других характеристик фазометров обеспечиваются при их построении на основе микропроцессора, работающего совместно с измерительными преобразователями. Такие фазометры позволяют измерять фазовый сдвиг между двумя периодическими сигналами за любой выб­ранный период, наблюдать флюктуации подобных сдвигов и оценивать их статистические характеристики: математическое ожидание, дисперсию, среднее квадратическое отклонение. Возможно также, как и в рассмотренных выше цифровых фазометрах, выполненных по схемам с жесткой логикой ра­боты, измерение среднего значения фазового сдвига.

Понятие фазы связано с гармоническими (синусоидальными) колебаниями. Для напряжения полной фазой является весь аргумент гармонической функции; величину  называют начальной фазой. Для двух гармонических колебаний с равными частотами

;

вводят понятие разности фаз . Модуль этой величины называют фазовым сдвигом.

Обычно принимают за начало отсчета момент времени, при котором начальная фаза первого (опорного) колебания равна 0. Тогда

;

где  – фазовый сдвиг между этими напряжениями.

Для негармонических, в частности импульсных, колебаний понятие фазового сдвига заменяют понятием сдвига во времени. В этом случае измеряют время задержки. Для гармонических колебаний времени задержки соответствует фазовый сдвиг .

Способы решения поставленной задачи.

О сциллографический метод:

Измерение фазового сдвига осциллографическим методом можно реализовать способами линейной, синусоидальной и круговой разверток. Ограничимся рассмотрением первых двух способов, как наиболее распространенных.

Способ линейной развертки. В каналы вертикального отклонения двухлучевого или двухканального осциллографа подают напряжения и ; генератор развертки осцил­лографа включен. Уравнивают амплитуды обоих напряжений. Осциллограмма будет иметь вид.

Фазовый сдвиг вычисляют по формуле:

=360∆T/T,

подставляя измерен­ные длины отрезков l и ∆l, соответ­ствующие Т и ∆T.

Способ синусоидальной развертки:

О существляется с помощью однолучевого осциллографа. В канал верти­кального отклонения подается на­пряжение , а в канал горизонтально­го ; генератор развертки выключен. На экране осциллографа появляется осциллограмма в виде эллипса, уравнение которого имеет вид

где В и А — максимальные отклонения по вертикали и горизонтали соответственно.

Положив х = 0, получим вертикальный отрезок у0=В sin; положив у=0, получим горизонтальный отре­зок х0 = A sin φ. Отсюда: sin φ = ± у0/В = ± х0/А.

Пе­ред измерением удобно уравнять максимальные отклонения по вертикали и по горизонтали (А = В); тогда у0 = х0.

Для вычисления фазового сдвига измеряют по осцилло­грамме отсекаемые на координатных осях отрезки 2х0 или 2у0 и сторону прямоугольника 2А или 2В, в который вписан эллипс:

Способ синусоидальной развертки не позволяет опре­делить фазовый сдвиг однозначно. Когда оси эллипса совпа­дают с осями координат, фазовый сдвиг φ равен 90о или 270°. Если большая ось эллипса располагается в первом и третьем квадрантах, то фазовый сдвиг 0 < φ < 90° или 270° < φ < 360°; если во втором и четвертом, то 90°<φ<180° или 180°< φ < 270°. Для устранения неоднознач­ности нужно ввести дополнительный сдвиг 90°, и по изме­нению вида осциллограммы лег­ко определить действительный фазовый сдвиг. Например, полу­чили φ, равный 30о или 330°. Ввели дополнительно +90°. Ес­ли осциллограмма осталась в прежних квадрантах, то φ = 330°; если переместилась во второй и четвертый, то φ=30°. Осциллографический метод не требует никаких дополните­льных приборов и прост по идее. Однако он является косвенным, требует линейных измерений и вычислений, что приводит к зна­чительным погрешностям. Общая погрешность складывает­ся из случайных погрешностей — измерения длин отрез­ков, совмещения следа луча с линиями масштабной сет­ки и конечного значения диаметра светового пятна на эк­ране осциллографа, и систематических—инструменталь­ной и методической. Инструментальная погрешность воз­никает за счет наличия собственных фазовых сдвигов в каналах осциллографа. Методическая погрешность связана с наличием гармоник в исследуемых напряжениях.

Погрешность измерения отрезков l можно уменьшить тщательной фокусировкой луча при малой яркости и при­менением осциллографа с электронно-лучевой трубкой, в которой масштабная сетка нанесена на внутреннюю поверхность экрана.

Фазовый сдвиг в каналах осциллографа легко обнаружить, подав одно и то же напряжение на оба входа осциллографа. При отсутствии фазового сдвига на экране появится прямая линия.

Если появляется эллипс, то нужно измерить значение фазового сдвига по формуле (4) и внести в результат измерения соответствующую по­правку. Если поправку точно определить не удается, то погрешность можно исключить методом компенсации. Для этого нужно выполнить два измерения: первое — как обычно, а второе — подав исследуемые напряжения на противоположные входы осциллографа. В результате пер­вого измерения получим φ1 = φ +∆φ, где ∆φ — неизвест­ный фазовый сдвиг в каналах осциллографа. В результате второго получим φ2 = (360° — φ) + ∆φ. Из разности φ2- φ1 = 360°- 2φ находим искомый фазовый сдвиг φ = 180° — [(φ2 — φ1)/2].