
- •1.Биотехнология как межотраслевая область научно-практических знаний.
- •2. Связи биотехнологии с рядом современных отраслей промышленных производств.
- •3.Основные факторы, обусловившие стимул в развитии современной биотехнологии.
- •4. Связь биотехнологии с биологическими, химическими, техническими и другими науками.
- •5. Практические задачи биотехнологии
- •6. Исторические этапы развития биотехнологии
- •7 Переход от эмпирического к научному подходу в решении б.Т. Задач
- •8)Экономические аспекты биотехнологии:
- •9. Ключевая роль биотехнологии в социально-экономическом развитии отдельных государств и в целом.
- •10. Области применения достижений биотехнологии
- •11.Продукты биотехнологических производств
- •12. Обобщенная схема биотехнологического производства.
- •14. Пути повышения рентабельности биотенологических производств.
- •15 Мелкомасштабная и крупномасштабная биотехн.
- •18. Способы очистки сточных вод.
- •19.Характеристика параметров “клеточных” процессов.
- •20. Характеристика параметров “метаболитических процессов”.
- •23 Микроорганизмы - основные объекты биотехнологии
- •24)Преимущества микроорганизмов перед другими объектами в решении современных биотехнологических задач:
- •25.Характеристика объектов биотехнологии.
- •26. Особенности использования эукариотических клеток в биотехнологическом производстве
- •27.Принципы подбора биотехнологических объектов.
- •28. Промышленные, модельные и базовые микроорганизмы.
- •29. Требования к продуцентам, используемых в биотехнологическом производстве.
- •30. Способы улучшения продуцентов
- •31) Уровни регуляции клеточного метаболизма и пути воздействия на него
- •2) Лактозный оперон, триптофановый
- •32) Физиологические и генетические способы регуляции метаболизма микроорганизмов-продуцентов.
- •2) Лактозный оперон, триптофановый
- •34. Регуляция на уровне транскрипции. Конечный продукт как регулятор биосинтеза
- •35. Роль внешних факторов в регуляции метаболизма продуцентов.
- •36. Понятие о продуцентах и сверхпродуцентах.
- •37. Использование генетических методов в биотехнологии.
- •40)Мутации изменяющие экспрессию генов на примере лактозного и триптофанового оперонов
- •42. Требования, предъявляемые к питательным субстратам, используемым в биотехнологических процессах
- •43. Сырье и питательные среды.
- •Среды, предназначаемые для ферментационных процессов
- •44. Основные типы питательных сред и принципы их выбора.
- •46. Природные сырьевые материалы растительного происхождения.
- •47.Продукты отхода различных произв-в, как сырье б.Т. Проц-в. Хим-е и нефтехим-е субстраты
- •49.Преимущества и недостатки биотехнологических производств по сравнению с химическими технологиями.
- •50. Принципиальные схемы биотехнологических процессов, определяющие конструктивные особенности биореакторов(ферменторов)
- •51.Основные требования, предъявляемые к системам, используемым для процессов ферментации
- •52. Общая схема ферментационных процессов.
- •53. Типы и режимы ферментаций: периодические и непрерывные п-сы.
- •54. Продукты первой и второй стадии ферментации
- •55 Взаимосвязь тропо- и идиофазы при получении первичных и вторичных метаболитов
- •56)Особенности роста и культивирования микроорганизмов в очистных сооружениях:
- •58. Особенности роста и культивирования микроорганизмов при производстве первичных и вторичных метаболитов
- •60. Открытые и замкнутые ферментационные системы.
- •61. Проблемы пеногашения при различных ферментациях.
- •62. Проблемы асептики, при различных ферментациях
- •64)Регулирование режима культивирование продуцентов по принципу хемостата:
- •65.Параметры роста при периодическом культивировании.
- •66. Продукты первой и второй фазы роста
- •67.Типы периодического культивирования.
- •68. Непрерывно-проточное культивирование.
- •69. Принцип подбора и конструирования биореактора.
- •70. Основные требования, предъявляемые к биореакторам
- •71.Системы перемещивания, примен-е в совр-х ферменторах
- •74. Специализированные ферментационные технологии: аэробные, твердофазные и газофазные процессы
- •75.Особенности культивирования клеток растений.
- •76. Особенности культивирования клеток животных.
- •78. Принципы подбора питательных сред для культивирования микроорганизмов, клеток животных и растений.
- •79 Конечные стадии получения продуктов биотехнологических процессов
- •80)Основные методы и принципы выделения продуктов биосинтеза
- •81.Методы отделения биомассы.
- •82. Пенообразование и пеногашение
- •83.Методы дезинтеграции клеток.
- •84. Выделение целевого продукта: осаждение, экстрагирование, адсорбция.
- •85. Электрохимические методы выделения целевого продукта, ионообменная хроматография, иммуноэлектрофорез.
- •86. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов
- •88)Продуценты белка.Требования,предъявляемые к микробному белку и возможности его использования.
- •90. Принципиальная схема производственного процесса белка одноклеточных
- •91.Лимитирующий фактор и его роль в процессах непрерывного культивирования
- •92. Технология производства ферментов для промышленных целей. Требования, предъявляемые к продуцентам ферментов.
- •93. Иммобилизованные ферменты и преимущества применения в биотехнологии.
- •94. Носители, используемые для иммобилизации ферментов: природные и синтетические органические носители. Типы неорганических носителей.
- •95.Способы иммобилизации ферментов
- •96. Иммобилизованные клетки в биотехнологии:
- •97. Генетическая инженерия и биотехнология.
- •98. Генетическая инженерия и технология рекомбинантных молекул
- •99.Основные окрытия, теоретически обосновавшие технологический подход к наследственной информации.
- •100. Общие понятия о матричных процессах: репликация, транскрипция, трансляция.
- •101. Инструменты генетической инженерии
- •102. Принципы создания рекомбинантных молекул in vivo.
- •103. Поняте о репликоне. Основные типы репликонов
- •104)Рестрицирующие эндонуклеазы,их основные характеристики область применения
- •106. Способы идентификации фрагментов днк.
- •107.Требование к базовым штаммам в генной инженерии.
- •108. Характеристика e.Coli, как основного базового штамма в генной инженерии.
- •109. Особенности грамположительных бактерий при ги манипуляциях.
- •110.Гибридизационные зонды
- •111. Рестрикционное картирование генетических элементов
- •112)Соединение фрагментов днк:
- •113. Обратная транскриптаза и её использование в генной инженерии.
- •116. Использование линкерных полинуклеотидов в технологии клонирования днк.
- •117. Понятие вектора
- •118. Общие свойства векторов.
- •119. Специализированные векторные системы
- •120)Векторные системы,применяемые применяемые при молекулярном клонировании в клетках прокариотических организмов:
- •121. Типы векторов: плазмидные и фаговые векторы(в) природного и искусственного происхождения.
- •122. Клеточные генетические структуры способные выполнять роль векторов
- •123. Принципы конструирования векторов.
- •124. Требования к идеальному плазмидному вектору.
- •125. Свойства фага с точки зрения вектора для создания рекомбинантных молекул.
- •127 Фазмиды и их применение
- •128)Космиды и их применение
- •129. Упаковочная система фага лямбда.
- •130. Банки генов и клонотеки
- •131.Свойства нитевидных фагов, позволяющие им выступать в качестве векторов
- •132. Векторы на основе генома нитевидных фагов.
- •133. Особенности тарансформации грамотрицательных и грамположительных бактерий
- •134.Векторы для клонирования в грамположительных бактриях
- •135. Челночные векторы (бинарные)
- •136)Векторные системы для клонирования в клетках дрожжей:
- •138. Использование вирусных геномов в качестве векторов для введения генетической информации в клетки животных
- •139.Свойства вируса sv40 и векторов на его основе.
- •140. Природные векторы для растений.
- •141. Организация и «поведение» Ti- плазмиды.
- •143. Стратегия клонирования в грамположительных бактериях
- •144)Стратегия клонирования в дрожжевых клетках
- •145)Стратегия клонирования в клетках млекопитающих:
- •146. Старатегия клонирования в клетках растений
- •147.Экспрессия чужеродной генетической информации в клетках бактерий, дрожжей, растений и животных.
- •148. Особенности организации векторных систем для экспрессии генов.
- •149. Сложная структура организации эукариотических генов и их экспрессия в прокариотических клетках.
- •150. Получение продуцента человеческого гормона роста
- •154. Способы введения рекомбинантной Днк в клетки растений и животных
- •155.Методы культивирования клеток высших растений.
- •156. Каллусные и суспензионные культуры; методы получения и область использования.
- •157. Протопласты растительных клеток; способы получения, методы культивирования и регенерации.
- •158. Слияние протопластов растительных клеток и методы реверсии. Гибридизация соматических клеток растений.
- •159. Культивирование клеток и тканей
- •161.Необходимые условия для культивирования клеток животных. Конструктивные особенности биореакторов.
- •162. Моноклональные антитела и технология гибридом
- •163.Биотехнология и сельское хозяйство.
- •164. Использование биотехнологических подходов в растениеводстве и животноводстве.
- •165. Биотехнология и медицина. Применение моноклональных антител.
- •166. Энергетика и биотехнология. Биотехнологические способы получения энергоносителей.
- •167. Биотехнология и ос
- •168)Социальные аспекты биотехнологии и биоинженерии
37. Использование генетических методов в биотехнологии.
Неотъемлемым компонентом в п-се создания наиболее ценных и активных продуцентов является их селекция. А генеральным путем селекции является сознательное конструирование генома на каждом этапе отбора нужного продуцента. В развитии микробных технологий важную роль играют методы, базирующиеся на селекции спонтанно возникающих измененных вариантов, у которых присутствуют нужные признаки. Используется ступенчатая селекция: на каждом этапе из популяции отбираются наиболее активные варианты (спонтанные мутанты), из которых на следующем этапе еще более эффективные штаммы.
П-с селекции наиболее эфф. Продуцентов знатчительно ускоряется при использовании метода индуцированного мутагенеза.
В качестве мутагенных воздействий применяются УФ, рентгеновское и гамма-излучения, хим. в-ва и др. Недостаток: трудоемкость и недостаток сведений о характере изменений.
Таким образом, тенденцией сегодняшнего дня является сознательное конструирование штаммов микроорганизмов с заданными свойствами на основе фундаментальных знаний о генетической организации и молекулярно-биологических механизмах осуществления основных функций организма.
В.39. Получение продуцентов путем ступенчатого отбора случайных мутаций и отбор мутантов с заданным фенотипом
Выделив более продуктивный вариант, процедуру мутагенеза и отбора повторяют. Т.е. проводят ступенчатый отбор. Обычно ступенчатый отбор вкл-т эт. мутагенеза, а также выделение спонтанных мутантов. Схема получения продуцентов таким методом имеет вид дерева.
40)Мутации изменяющие экспрессию генов на примере лактозного и триптофанового оперонов
LAC-оперон:
Ген I-даёт белок репрессор, который имеет сродство к промоторной области,т.е. он закрывает ту область ДНК ,мешая движению РНК-полимеразы.
1-область узнавания активатора;2-область узнавания полимеразы;3-оператор;
1,2,3-промотор;4- терминатор(место связывания фактора В
К промотору должна прикрепиться ДНК-зависимая РНК-полимераза.
Lac Z-β-галаксидаза(разрушает дисахарид лактозу до глюкозы и галактозы)
Lac Y-β-галоктозидпермиаза
Lac A-не участвует в утилизации лактозы.
Если лактоза есть в среде:происходит открытие оператора и начинается транскрипция РНК-полимеразы,т.е. утилизация лактозы.При обрботке молока гактозидазой-это молоко можно использовать для питания маленьких детей и людей,которые не могут утилизировать лактозу.
Если убрать терминатор –усилится синтез белка,если убрать оператор-усилится синтез белка.
При наличии в среде и лактозы и глюкозы будет происходить утилизация глюкозы сначала.В промоторной области есть ещё одна часть которая активируется(область узнавания активатора)
Мутации в последовательностях гена-регулятора или оператора приводят в определённых случаях к нарушению либо образования полноценного репрессора,либо нарушение его сродства к оператору.
Триптофановый оперон:с помощью аналога триптофана можно получить устойчивые к ингибирующему действию триптофана мутанты,характеризующиеся повышенной продукцией данной аминокислоты.Генетический анализ показывал,что у таких мутантов повреждён ген-регулятор распологающийся на значительном расстоянии от контролируемых им генов триптофанового оперона.
41. Роль сырья в экономике биотехнологических процессов. Источником природного сырья являются сельское хозяйство и отрасли лесоводства. Получаемые в этих отраслях материалы представляют собой соединения различной химической сложности и включают сахара, крахмал, целлюлозу, гемицеллюлозу и лигнин. Из первичных сырьевых материалов в процессе производства тех или иных продуктов традиционными методами получается огромное число разнообразных побочных продуктов, которые в силу достаточно высокой питательной ценности могут использоваться в биотехнологических процессах.
Наиболее подходящим и доступным, чтобы служить питательным субстратом для биотехнологических процессов, является сырье, используемое в производстве сахара - сахарная свекла и сахарный тростник. Однако в настоящее время в мире традиционное использование сахара постепенно снижается, и он заменяется более эффективными подсластителями. Складывающаяся ситуация на мировом сахарном рынке будет способствовать поискам его нового применения, и многие страны тропических областей испытают существенный экономический коллапс, если исчезнет сахарный рынок. Существенную значимость представляют крахмалосодержащие сельскохозяйственные продукты, включающие различные злаки, такие, как кукуруза, рис, пшеница, картофель, различные корнеплоды, сладкий картофель и маниока. Некоторым недостатком крахмала является то, что до использования в качестве питательного субстрата он обычно должен быть разрушен до моносахаридов или олигосахаридов путем ферментативного переваривания или гидролиза. Тем не менее в настоящее время с определенным успехом разрабатываются перспективные биотехнологические процессы, основанные на использовании данного полисахарида. Полисахарид целлюлоза, являющийся ценным источником энергии и углерода. Однако необходимым условием подготовки данного материала к использованию в качестве биотехнологического сырья является ее гидролиз до простых водорастворимых сахаров (глюкозы, целлобиозы). Наибольшие сложности встречаются при попытках утилизации древесины, в которой целлюлоза находится в комплексе с гемицеллюлозой и лигнином. Лигноцеллюлозные комплексы характеризуются очень высокой степенью устойчивости к природным силам биодеградации. Именно это свойство и обусловливает долговечность деревьев и, естественно, построек из дерева, поскольку деревья состоят главным образом из лигноцеллюлозы. Лигноцеллюлоза является наиболее распространенным и возобновляемым природным сырьем, доступным человеку практически во всех странах мира. Однако существуют технологические трудности, прежде чем окажется экономически выгодным использование этого энергетически богатого соединения. Необходимы процессы предварительной обработки. Чистая целлюлоза может быть довольно легко разрушена путем химического или ферментативного гидролиза до растворимых сахаров, которые затем легко подвергаются ферментации (сбраживанию) микроорганизмами с образованием этанола, бутанола, ацетона, одноклеточного белка (SCP), метана и многих других продуктов. Распространенным источником углерода и энергии являются компоненты нефти и газа. Наилучшим субстратом из компонентов нефти являются н-алканы (особенно жидкие) с числом углеродных атомов от 10 до 20. Их могут утилизировать большинство бактерий и дрожжи. Однако и нефть, и газ также истощаются. Поэтому биотехнологии ориентируются на возобновляемые источники сырья. Большое внимание уделяется различным видам растительной массы: плоды, соки, клубни, травяная масса и упоминавшаяся выше древесина. Используются также отходы сельского хозяйства, деревообрабатывающей и бумажной промышленности, а также многих отраслей пищевой промышленности. Возможность использования перечисленных сырьевых материалов является основой создания безотходных производств.
Поэтому многие полагают, что в качестве доступного и, по-видимому, относительно дешевого сырья для биотехнологии окажутся различные побочные продукты одних биотехнологических процессов для других. Например, на отходах микробиологического производства этанола можно с успехом культивировать кормовые дрожжи. Или же при получении биомассы путем выращивания дрожжей на гидролизатах растительного сырья на фильтратах можно осуществлять биосинтез грибного белка. Либо на биомассе одного микроорганизма выращивать другие виды.