Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mtkm.docx
Скачиваний:
3
Добавлен:
18.09.2019
Размер:
31.91 Кб
Скачать

60.Как указывалось выше, процесс резания металлов при фрезеровании не имеет принципиальных отличий от процесса резания при точении. Остановимся на некоторых явлениях, сопровождающих процесс резания. Срезанный слой металла в виде стружки, как известно, может иметь различный вид в зависимости от условий обработки. По классификации проф. И. И. Тиме, стружка может быть следующих типов: сливная, скалывания и надлома. Нарост при резании металлов. При резании вязких металлов в некоторых случаях на передней поверхности инструмента образуется так называемый нарост. Это прикрепившийся (приварившийся) к передней поверхности резца сильно деформированный кусочек обрабатываемого материала в виде клина большой твердости (рис. 243). Этот кусочек металла непрерывно сходит со стружкой и снова образуется. Он по существу является режущей частью инструмента и предохраняет режущую кромку от износа. Однако если на передней поверхности инструмента образовался нарост, то ухудшается качество обработанной поверхности. Поэтому при чистовой обработке металлов, а также при нарезании резьбы нарост является вредным явлением. Для его ликвидации следует тщательно доводить переднюю поверхность инструмента или изменять скорость резания (чаще в сторону ее увеличения до 30 м/мин и выше), а также применять соответствующие условиям обработки смазывающеохлаждающие жидкости. Усадка стружки. При резании металлов стружка деформируется и оказывается короче того участка, с которого она срезана (рис. 244). Это явление укорочения стружки по длине называется продольной усадкой стружки. Объем металла при деформировании практически не меняется. Следовательно, укорачивание стружки по длине должно сопровождаться увеличением площади поперечного сечения стружки. Увеличение площади поперечного сечения называется поперечной усадкой стружки.  Деформирование стружки приводит к ее завиванию. Канавки режущих инструментов (сверл, протяжек, фрез и др. ) должны обеспечивать возможность свободного размещения завивающейся стружки.  Тепловые явления при резании металлов. В процессе резания металлов обрабатываемая деталь, режущий инструмент и стружка нагреваются. При увеличении скорости резания, особенно во время снятия тонких стружек, температура в зоне резания увеличивается до 60°. При дальнейшем повышении скорости резания в ряде случаев можно наблюдать сходящую стружку, нагретую до ярко-красного каления (900°С).  На обработанной поверхности стальной детали при этом могут быть заметны оттенки всех цветов побежалости, свидетельствующие о высокой температуре тончайшего поверхностного слоя детали в момент соприкосновения ее с задней поверхностью инструмента. Повышение температуры в зоне резания происходит в результате превращения затрачиваемой на процесс резания механической энергии в тепловую. Еще Я. Г. Усачев установил, что в стружку уходит от 60 до 86% общего количества теплоты, образующейся при резании, в режущий инструмент - от 10 до 40% общего количества теплоты, а в обрабатываемую заготовку - от 3 до 10%. Необходимо отметить, что как в стружке, так и в инструменте теплота распределяется неравномерно. В режущем инструменте при непрерывной его работе устанавливается постоянный тепловой режим за несколько минут работы. Практически выравнивание температуры в обрабатываемой детали заканчивается уже после ее обработки. Образующееся в зоне резания тепло оказывает большое влияние на весь процесс резания и связанные с ним явления (наростообразование, износ инструмента и др.) Поэтому в теории резания металлов тепловым явлениям при резании металлов уделяется большое внимание.  Шероховатость обработанной поверхности. Проблема улучшения качества выпускаемой продукции наряду с непрерывным повышением производительности труда является важнейшей в машиностроении. При оценке качества готовой детали учитывают следующие основные показатели: точность размера, точность геометрической формы и шероховатость поверхности. Шероховатость обработанной поверхности зависит от следующих факторов: правильного выбора геометрических параметров (углов заточки) инструмента и прежде всего переднего угла. углов в плане, правильного выбора подачи, скорости резания, а также применения соответствующих смазывающеохлаждающих жидкостей. Для получения высокого класса чистоты поверхности необходимо также, чтобы передняя и задние поверхности инструмента были тщательно доведены (обработка алмазными кругами или пастой карбида бора). Вибрации при резании металлов. В процессе резания металлов при определенных условиях возникают вибрации (колебания). Появление вибраций во многих случаях является основной причиной, ограничивающей возможность повышения режимов резания и производительности труда. Вибрации при резании металлов вредно отражаются на стойкости инструмента. Даже слабые вибрации препятствуют достижению высокого класса чистоты обработанных поверхностей. При прочих равных условиях возможность возникновения вибраций при обработке чугуна значительно меньше, чем при обработке стали. Вибрации можно устранить или уменьшить путем применения инструмента с малыми задними и большими передними углами, а также выбором соответствующих скоростей резания и условий охлаждения, при которых снижается интенсивность колебаний. Для устранения или уменьшения вибраций применяют специальные устройства виброгасители.

Смазочно-охлаждающие жидкости (Смазки для металлообработки )

СОЖ, или смазочно-охлаждающие

К смазочно-охлаждающим жидкостям относятся:  Ленол 10М, СОЖ-МР7.

жидкости. Так обобщенно называются сложные, состоящие из ряда компонентов системы, отвечающие за обеспечение смазочно-охлаждающего процесса деталей станочного оборудования и металлообрабатывающего инструмента. Благодаря работе СОЖ износ инструмента снижается, а соответственно качество и точность обработанных деталей повышаются. СОЖ в процессе своей работы выполняет так же ряд сопутствующих функций: защищая обработанные детали, оборудование и инструмент от коррозийных процессов, она так же избавляет рабочее пространство станка от стружки и абразивной пыли.

По составу различаются три группы СОЖ:- Чистые минеральные масла, усиленные комплексом специальных присадок жиров, органических соединений серы, фосфора, хлора, а так же антипенных, антикоррозионных и антиокислительных присадок.

- Водные эмульсии минеральных масел. Этот вид СОЖ создается прямо на месте использования, просто разбавляя водой эмульсолы (40-80% минеральных масел, 20-60% эмульгаторов с добавками).

- Еще один вид СОЖ - водные растворы концентрата поверхностно-активных веществ в комплексе с низкомолекулярными полимерами.

Концентрация рабочего состава эмульсии или раствора зависит исключительно от условий, в которых планируется его использовать. Как правило, это 2-10% раствор.

61. Кинематика резания

Кинематика станков и кинематика резания, хотя они и взаимосвязаны, принципиально различны как в области теории, так и в области практического использования.

В кинематике станков изучаются научные основы и работа таких кинематических структур взаимодействующих механизмов станка, настройкой которых можно сообщить инструменту и обрабатываемой заготовке необходимые сочетания и количественные соотношения главного и вспомогательного движений, т.е. скорости и подачи. Кинематика станков рассматривает движения, передаваемые механизмами станков инструменту и обрабатываемой заготовке во время как рабочих, так и холостых циклов.

Движения, сообщаемые инструментам и заготовке механизмами станка, обычно рассматривают в прямоугольной системе координат с осями Х, Y, Z (рис.13). С ее помощью ориентируют также взаимное положение всех механизмов станка. Кинематика станков обеспечивает различные сочетания движений механизмов:

  1. рабочие и холостые движения;

  2. движения скорости резания при включенном механизме подачи;

  3. движение подачи при бездействующем механизме скорости;

  4. одновременное движение скорости и подачи.

Все эти кинематические возможности необходимы для универсального и рационального использования металлорежущих станков.

Рис.13. Принципиальные кинематические схемы

В кинематике резания рассматриваются классификации принципиальных кинематических схем резания, как научная основа анализа и синтеза:

  1. технологических способов формообразования деталей машин,

  2. трансформации геометрических параметров режущей части инструментов в процессе резания металлов.

Кинематика резания рассматривает движения, которые действуют в процессе резания во время рабочего цикла, с момента, когда лезвие вступает в контакт с металлом заготовки, и до момента, когда контакт лезвия с заготовкой прекращается. В процессе резания механизм станка сообщает закрепленным на нем инструменту и заготовке прямолинейное и вращательное движения. Суммируясь, эти движения сообщают лезвиям инструментов относительно заготовки результирующее движение резания. Кинематика резания рассматривает относительные взаимные перемещения, совершаемые во время рабочего цикла обрабатываемой заготовкой и лезвием инструмента, независимо от того, раздельно или одновременно приводятся в движение механизмами станка заготовка или инструмент.

Относительные перемещения заготовки и лезвий инструмента в кинематике резания рассматриваются в прямоугольной координатной системе с осями X, Y, Z, той же, что и в кинематике станков (рис.13)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]