Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
плазмидное ДНК.docx
Скачиваний:
2
Добавлен:
18.09.2019
Размер:
93.84 Кб
Скачать

Реферат Тема: Плазмидная днк

Плазмиды — дополнительные факторы наследственности, расположенные в клетках вне хромосом и представляющие собой кольцевые (замкнутые) или линейные молекулы ДНК.

Плазмиды — внехромосомные (дополнительные по отношению к хромосоме) генетические структуры бактерий, способные автономно размножаться и существовать в цитоплазме бактериальной клетки. Некоторые плазмиды могут с определенной частотой включаться (интегрироваться) в бактериальный геном и размножаться (копироваться) затем вместе с ним как его составная часть. Термин «плазмида» введен американским генетиком Ледербергом (J. Lederberg) в 1952 г. для обозначения полового фактора бактерий (F-фактора, F-плазмиды), обнаруженного в клетках культуры кишечной палочки и ответственного за их способность быть донорами генетического материала (молекул ДНК) при конъюгации с клетками-реципиентами, не содержащими полового фактора. В дальнейшем у бактерий различных видов были выявлены П., контролирующие их устойчивость к сульфаниламидам, антибиотикам и другим антибактериальным препаратам.

Плазмиды представляют собой молекулы ДНК с молекулярной массой от 1×106 до 200×106.

Эти молекулы, как правило, замкнуты в кольцо и находятся в клетке в сверхспирализованной форме. Неконъюгативные плазмиды, мол, масса которых не превышает 20×106, имеют относительно простую генетическую организацию. Конъюгативные П. имеют более крупные размеры и наряду с генетической областью, контролирующей их репликацию, содержат также так называемую tra-область (англ. transfer перенос). Эта область определяет способность клетки, содержащей П., быть генетическим донором, т.е. вступать в конъюгацию с другой клеткой (реципиентом) и передавать ей свой генетический материал (плазмидную либо хромосомную ДНК). Под контролем tra-генов синтезируются поверхностные «половые» ворсинки (F-пили) клетки-донора, необходимые для ее конъюгации с клеткой-реципиентом, а также ферменты, обеспечивающие метаболизм ДНК в процессе конъюгации. Неконъюгативные П. обычно не содержат tra-области и поэтому не могут самостоятельно передаваться из одной клетки в другую. Однако передача неконъюгативной П. возможна за счет продуктов (белков) tra-генов конъюгативной П., находящейся вместе с неконъюгативной П. в одной и той же клетке. Активность плазмидных генов, ответственных за репликацию, несовместимость П., конъюгативность и другие свойства бактериальных клеток, в той или иной мере находится также под контролем хромосомных систем генетической регуляции.

Значительное место в составе плазмидной ДНК могут занимать различные гены, обеспечивающие бактериям-хозяевам в определенных условиях существования селективные преимущества по сравнению с бесплазмидными бактериями (например, гены, контролирующие устойчивость клеток к действию антибиотиков, солей тяжелых металлов, ионизирующего излучения, бактериоциногенность и др.). Предполагают, что в процессе эволюции бактерий такие гены могли попасть в состав П. в результате генетического обмена (рекомбинации) между различными молекулами ДНК бактериальных клеток. Установлена важная роль в этом процессе мигрирующих (транслоцирующихся) фрагментов ДНК (транспозонов), способных перемещаться из одной генетической структуры клетки в другую (например, из хромосомы в плазмиду, из одной плазмиды в другую плазмиду, из бактериофага в плазмиду и наоборот).

Способность П. быстро копироваться и передаваться из клетки в клетку при внутривидовой, межвидовой и межродовой конъюгации бактерий определяет важную роль плазмид в эволюции этих организмов. П. как автономные единицы репликации (репликоны) широко применяются в экспериментах по генетической инженерии. Их используют для получения в промышленных масштабах биологически активных белков — ферментов, гормона роста, инсулина и др. Способность многих П. выполнять роль половых факторов бактерий дает возможность применять их для экспериментального получения различных гибридных форм и генетического картирования этих организмов. Обнаружение в популяциях различных видов патогенных и условно-патогенных бактерий П., контролирующих их вирулентные свойства, позволяет предположить, что П. имеют определенное значение в инфекционной патологии и развитии эпидемических процессов. Данные о типах R-плазмид и их распространенности в современных сообществах микроорганизмов необходимы для разработки рациональной стратегии использования антибиотиков и других антибактериальных средств при лечении инфекционных болезней. Межвидовой и межродовой перенос П., контролирующих различные метаболические функции клетки (например, способность сбраживать строго определенные углеводы, образовывать сероводород и др.), служит одной из причин образования атипических форм бактерий, что затрудняет диагностику инфекционных болезней.

Плазмиды способны удваиваться (реплицироваться) автономно, но при этом они эксплуатируют репликационную систему клетки хозяина. Большинство плазмид кодирует специальные белки — инициаторы репликации. Эти белки начинают процесс репликации, который затем подхватывается и продолжается репликационной системой клетки.

Для кольцевых плазмид известны несколько механизмов (способов) репликации:

  • механизм катящегося кольца (rolling cycle),

  • тетта-механизм (механизм «глазка»),

  • D-механизм.