Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia_10.doc
Скачиваний:
5
Добавлен:
18.09.2019
Размер:
248.32 Кб
Скачать

Лекция 10. Цифровые САУ

 

Цифровые системы строятся на базе комплекса средств вычислительной техники, основными элементами которого являются:

  1. ЦВМ,

  2. устройства ввода,

  3. устройства вывода.

Функции ЦВМ могут выполнять:

  1. ЭВМ (компьютеры),

  2. DSP — цифровые сигнальные процессоры,

  3. ЦУ на жесткой логике.

Первые относятся к универсальным устройствам управления, вторые специализированны для приложений, третьи разрабатываются для конкретных устройств (например, цифровой фильтр имеющийся в каждом аналогоцифровой преобразователь).

Устройствами ввода и вывода в случае состыковки с аналоговыми сигналами являются аналогоцифровые (АЦП) и цифроаналоговые (ЦАП) преобразователи, а в случае состыковки с цифровыми сигналами — порты и интерфейсы.

В системах с ЦВМ, последние могут выполнять роли:

  1. регулятора,

  2. регулятора и устройства сравнения,

  3. корректирующего устройства,

  4. самого объекта.

Если ЦВМ универсальная (ЭВМ), то возможно построение многофункциональных САУ, когда одна ЦВМ обслуживает комплекс составляющих объект устройств. Например, в станочном оборудовании:

  1. стабилизации скорости механизмов подачи,

  2. формировании траектории обработки,

  3. управление приводом главного движения,

  4. управление механизмом смены инструмента,

В подобных случаях в состав системы ЦУ должны входить аналоговые или цифровые мультиплексоры и демультиплексоры.

Во всех случаях ЦВМ предоставляет легко доступные информационные потоки, позволяющие кроме прямого управления осуществлять функции:

  1. контроля,

  2. оптимизации,

  3. координации,

  4. организации всех процессов.

 

12.1. Процессы протекающие в системах цифрового управления.

 

Дискретная природа ЦВМ определила наличие 2-х процессов в системах ЦУ:

  1. дискретизации сигналов по времени (получение решетчатой функции),

  2. квантования сигналов по уровню (аналогоцифрового и цифроаналогового преобразования).

Дискретизация сигналов по времени делает систему дискретной, а квантование по уровню — нелинейной. Оба процесса сопровождаются возникновением методических погрешностей.

Выбор частоты дискретизации производится исходя из ширины полосы пропускания или из времени регулирования замкнутой системы. Разумные частоты дискретизации в 6..10 раз больше полосы пропускания или от 2-х до 4-х дискретных отсчетов за время нарастания, в противном случае качество системы будет резко ухудшаться.

Количество ступеней квантования по уровню оказывает существенное влияние на динамические свойства систем. При недостаточном их количестве могут возникать периодические режимы переключений между дискретами (автоколебания).

Может случиться так, что выполняемые ЦВМ задачи (опрос датчиков, расчет программы, формирование информационных потоков, запись в порты вывода) могут быть выполнены только при систематической задержке синтезируемого воздействия на один такт дискретизации. В таком случае в системе с ЦВМ появится запаздывание , которое должно быть учтено оператором запаздывания и, возможно, смещенной передаточной функции .

Обычно количество ступеней квантования по уровню велико, поэтому его влиянием пренебрегают. Это делает систему, линейной и позволяет использовать математический аппарат импульсных систем.

 

12.2. Методика вывода дискретных передаточных функций

 

Общая схема цифровой системы представлена на рис. 1

Рис. 1. Структурная схема цифровой САУ

 

Работу ЦВМ обеспечивают аналогоцифровой (квантователь) и цифроаналоговый (экстраполятор нулевого порядка) преобразователи, следовательно:

.

Для нахождения изображения непрерывной передаточной функции по таблицам, последнюю надо разложить на элементарные дроби (т.е. преобразовать к параллельной структуре):

,

где:

;

.

Следовательно

; ; .

Исходя из этого получаем, что

.

Для параметров заданной системы

.

Следовательно передаточная функция системы определяется как:

.

 

12.3. О синтезе систем с цвм методом лчх

 

Для решения проблемы синтеза цифровых САУ рассмотрим ее расчетную схемы, представленную на рис. 2.

Рис. 2. Расчетная схема цифровой САУ

 

Изображенный дискретный фильтр имеет в области частот ЛАЧХ и ЛФЧХ периодические составляющие, как показано на рис. 3. Поэтому, использовать такой способ определения частотных характеристик САУ при синтезе ее параметров неудобно.

Рис. 3. Логарифмические характеристики цифровой САУ

 

Перевод с помощью — преобразования частотных характеристик в область псевдочастот , позволяет получить ЛАЧХ, которые по виду подобны ЛАЧХ непрерывных систем.

При этом используется следующая последовательность преобразований:

.

Эти преобразования при использовании экстраполятора нулевого порядка могут быть формализованы. Пусть передаточная функция непрерывной части имеет вид:

.

Техническая реализуемость систем с ЦВМ позволяет ввести положения:

  1. Пусть для частоты среза непрерывной части выполняется условие .

  2. Все постоянные времени знаменателя разделим на две группы — до и после диапазона от частоты среза до частоты дискретизации: .

  3. Постоянные времени в числителе пусть больше чем .

  4. Поскольку система должна быть устойчива, пусть наклон ЛАЧХ на будет –20 дБ/дек.

Принятые положения, позволяют описать свойства систем в области низких и высоких частот двумя передаточными функциями:

В области низких частот

В области высоких частот

Теперь для формального перехода в область псевдочастот (минуя промежуточные и -преобразования) достаточно подставить в передаточной функции вместо и умножить ее на множитель , для низких частот приближенно равный 1.

А передаточная функция будет соответствовать выражение:

,

Модуль которого:

.

Результирующий фазовый сдвиг обеих областей определяется следующим выражением:

.

Из вышесказанного можно сделать следующие выводы:

  1. В области низких частот асимптотическая ЛАЧХ системы с ЦВМ практически сливается с ЛАЧХ непрерывной части (множитель ) и можно положить . Это позволяет один к одному использовать разработанную для непрерывных систем методику формирования низкочастотной части желаемой ЛАЧХ.

  2. В области высоких частот отличия вносит множитель , ухудшающий условия устойчивости. Поэтому при формировании запретной высокочастотной области в расчетных формулах величина должна быть просуммирована с малыми постоянными времени:

для желаемых частотных характеристик, содержащих 3 участка с наклонами –40, –20 и –40 дб/дек.

,

где

.

Последнее выражение используется для систем, желаемые частотные характеристики имеют два участка с наклонами –20 и –40 дб/дек.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]