Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
07_Магнитные свойства.DOC
Скачиваний:
12
Добавлен:
18.09.2019
Размер:
1.73 Mб
Скачать

20

Магнитные свойства вещества.

Магнитные свойства материала определяются структурой материала и, в особенности,

1 - спином электрона – направлением его вращения вокруг собственной оси (спиновые свойства). (Класс устройств, характеристики которых зависят от спина и величины магнитного момента, называют спиновой электроникой или спинтроникой.)

2 - параметрами дрейфа носителей заряда (токовые свойства).

Внешнее магнитное поле с напряженностью Но:

1 - вызывает прецессию электрона,

2 - вызывает намагниченность образца Jm = м Н0 (аналогично поляризации диэлектрика, м - магнитная восприимчивость),

3 - расщепляет уровень свободного атома на подуровни с различными магнитными квантовыми числами.

Рис. Электроны «спин - вверх» и «спин - вниз».

Магнитные моменты.

Магнитные свойства определяются магнитными моментами, возникающими при вращении электронов вокруг собственной оси (спиновый момент ms) и вокруг ядра (орбитальный момент ml ). Магнитные моменты протонов и нейтронов (ядра) малы по сравнению с параметрами электрона.

Спиновые магнитные моменты спаренных электронов компенсируют друг друга ( Be, C, Mg,...). Постоянным магнитным моментом обладают атомы, у которых

- на внешней орбите находится нечетное число электронов ( H, K, Na, Ag,..),

- есть распаренные электроны ( О ).

Единицей измерения атомных магнитных моментов является магнетон Бора в

в = qе h / ( 2 me ) = 9.27 10-24 Дж/Тл,

где qе - заряд электрона, mе - масса электрона, Тл - тесла - единица измерения индукции.

Теоретически спиновый магнитный момент у атома железа мог бы составлять 5 в, однако, часть электронов покидает атом при образовании кристаллической структуры, поэтому результирующий спиновый магнитный момент атома меньше.

Вещество

Fe

Cr

Mn

Диспрозий (№66)

Результирующий для атома спиновый магнитный момент, число в

2.3

0.4

0.5

5

Орбитальный магнитный момент mорб создан движущимся вокруг ядра электроном (т.е. током) и направлен перпендикулярно плоскости орбиты в соответствии с правилом буравчика. Результирующий атомный орбитальный магнитный момент mат зависит от расположения электронных орбит и магнитного квантового числа m.

Результирующий атомный магнитный момент - вектор суммы отдельных спиновых и орбитальных моментов - не равен 0 в отсутствие симметрии структуры. Это постоянный магнитный момент атома Мат.

Результирующий магнитный момент образца Мобр складывается из векторов атомных магнитных моментов. Большая величина Мат обусловливает тенденцию к их взаимному ориентированию в пределах нанокластера, домена или в образце в целом и, в результате, не только к большому Мобр , но и к появлению дополнительной энергии обменного взаимодействия. В отсутствие внешнего магнитного поля, Но = 0, тепловое движение мешает упорядочиванию магнитных моментов. Двух - трех атомов железа недостаточно для формирования устойчивого нанокластера, так как результирующая намагниченность может быть меньше тепловой энергии. Т.о. формируется критерий минимальной энергии образования магнитного нанокластера. С учетом влияния поверхности раздела, дефектов и анизотропии структуры минимальный размер кластера однородного намагничивания составляет 1 нм для нормальной температуры. Максимальная величина кластера определяется по критерию минимума энергии.

Магнитные нанокластеры широко встречаются в природе. Они помогают живым организмам (от бактерий до китов) ориентироваться в пространстве по магнитным силовым линиям Земли (чувствительность к изменению напряженности магнитного поля порядка 0,1%). Даже в микроорганизмах имеются «магнитосомы». Существенно, что в биоорганизмах создаются шестигранные кристаллы магнетита без дефектов - в отличие от неживой природы, где магнетит формируется при высоких температуре, давлении и при наличии дефектов.

Прецессия электрона.

Если ось орбитального вращения электрона не совпадает с направлением вектора Но, появляется дополнительное движение – вращение орбиты электрона (Iорб) вокруг направления вектора Но - прецессия. Угловая частота прецессии (частота Лармора):

L = (qe / 2 me ) o Ho .

Прецессия происходит под углом к оси (угол прецессии)

Ho

Iорб

m

Рис. Схема прецессии электрона во внешнем магнитном поле.

Дополнительное движение электрона вызывает дополнительный ток и, следовательно, индуцирует магнитный момент m , направленный противоположно вектору Но. В итоге результирующее магнитное поле Н и магнитная индукция В становятся меньше. Этот эффект называется диамагнетизмом. Он имеет место в любом веществе, но проявляется там, где отсутствуют другие, более сильные магнитные эффекты.

Степени намагниченности.

Результирующая магнитная индукция В включает внешнее поле Во и внутреннее поле Вi. Последнее зависит от наличия постоянного магнитного момента вещества:

В = Вo + Вi , Bо = о Hо , Вi = o Jm = ом Ho ,

где м - магнитная восприимчивость (характеризует способность вещества намагничиваться), Jm - намагниченность,

В = о ( 1 + м ) Но = о  Но ,

где - относительная магнитная проницаемость вещества (  = 1 + м ).

Разнообразие структур вещества приводит к разнообразию магнитных свойств. Вещества с м < 0 и < 1 называются диамагнетиками. Вещества с м > 0 называют парамагнетиками , если > 1 , и ферромагнетиками, если >> 1 .

Д иамагнетик Н0

Парамагнетик

Ферромагнетик

Антиферромагнетик

Ферримагнетик

Рис. Схематическое изображение постоянных магнитных моментов атомов различных видов магнетиков.

К диамагнетикам относятся вещества с заполненными электронными оболочками: инертные газы, некоторые полупроводники и металлы.

Вещество

Ge

Si

Bi

м

- 0.8 10-5

- 0.3 10-5

- 1.8 10-5

Диамагнетики при нормальной температуре ослабляют внешнее магнитное поле. Это, наряду с затратой энергии на переориентации элементов вещества, эквивалентно рассеиванию энергии на магнитном сопротивлении Rм .

Rм = Σi=1....n ( li / ( o i Si )),

где l - длина тракта (части детали), S - площадь поперечного сечения. Для сложного магнитного тракта, в том числе из пара- и ферромагнетиков, расчет сопротивления производится по правилам Кирхгоффа.

Group 45

Рис. Жидкий кислород проявляет свои хотя и слабые, но магнитные (парамагнитные) свойства в поле постоянного магнита.

В человеческом организме формируется множество магнитных моментов, поэтому у человека есть свой результирующий магнитный момент, называемый иногда «магнитным весом». У разных людей «магнитные веса» различаются меньше, чем физические. Это используется для создания устройств контроля доступа. С помощью колец Гельмгольца в ограниченном пространстве с двумя дверями создается магнитное поле напряженностью 10-7 – 10-8 Тл. Система автоматического открывания дверей, ориентируясь на «магнитный вес» одного человека, разрешает доступ. При большем «магнитном весе» - доступ закрывается.