
- •5 Введение
- •Глава 1
- •1.1. Информатика — состав и структура
- •1.2. Соотношение понятий «информация», «данные», «знания»
- •1.3. Структуризация взаимосвязи информатики с предметной областью применения
- •1.4. Уровни информационных процессов
- •Глава 2
- •2.1. Текстовая информация. Модель документа
- •2.2. Языки разметки документов
- •2.3. Технологии xml
- •2.4. Текстовый редактор Word
- •Глава 1 5
- •5.3. Физическая организация данных в системах управления данными 296
- •Глава 3
- •3.2. Форматы записи-воспроизведения аудиосигналов
- •3.3. Технологии статических изображений
- •3.4. Программные средства обработки изображений
- •3.5. Цифровое видео
- •Глава 4
- •4.1. Оптическое распознавание символов (ocr)
- •Глава 1 5
- •5.3. Физическая организация данных в системах управления данными 296
- •Глава 5
- •5.2. Базы данных и субд
- •Логический файл
- •Логический файл
- •Очереди
- •Время установки головок чтения-записи
- •5.4. Анализ информации и хранилища данных
- •Глава 6
- •Глава 1 5
- •5.3. Физическая организация данных в системах управления данными 296
- •Глава 7
- •Глава 8
- •Глава 1 5
- •5.3. Физическая организация данных в системах управления данными 296
3.3. Технологии статических изображений
Источниками статических изображений традиционно являлись растровые сканеры, а в последнее время широко используются цифровые фотокамеры [25]. Рассмотрим основные характеристики изображений, процессов их создания и обработки.
Оптическое разрешение
Оптическое разрешение измеряется в пикселях на дюйм (ppi — pixels per inch), иногда dpi — точки на дюйм, однако понятие точка означает элемент, не имеющий конкретной формы, ими меряется разрешение печатающих устройств. Сканеры и растровые графические файлы оперируют пикселями, имеющими форму квадрата.
Сканеры. Оптическое разрешение показывает, сколько пикселей сканер может считать на квадратный дюйм. Его значение записывается так: 300 х 300, 300 х 600, 600 ж 1200 и т. п. Первое число говорит о количестве считывающих информацию датчиков, именно на него стоит обращать внимание, хотя часто производители и продавцы любят указывать, в качестве разрешения, что-нибудь вроде 4000. 4500 dpi. Это интерполированное разрешение, которое является свойством не сканера, а его поддерживающей программы. Качество изображений, полученных таким образом зависит не только от сканера, но и от качества функций интерполяции, реатизованных в программе [25].
Йнтерполяция — способ увеличения (уменьшения) размера или резолюции файла посредством программы. При уменьшении данные отбрасываются, при увеличении — программа их вычисляет. Таким образом, сильно увеличенные картинки выглядят размытыми или зубчатыми (в зависимости от способа интерполяции).
Известны три основных способа интерполяции:
. Nearest Neighbor — для добавляемого пикселя берется значение соседнего с ним;
Bilinear — выбирается среднее цветовое значение пикселей с каждой стороны от создаваемого;
Bicubic — усредняется значение группы не только непосредственно граничащих, но и всех соседних пикселей. Какой именно диапазон пикселей выбирается для усреднения и по какому алгоритму это усреднение происходит — этим отличаются способы бикубической интерполяции в разных программах.
Наконец, важным свойством относительно новых образцов сканеров является сканирование в 32-битном (и более) режиме. Здесь цвет одного пикселя описывается не в 24 битах стандартного RGB — один из 16 700 000 оттенков, а большим количеством информации, что позволяет передать большее количество уникальных оттенков. Затем Photoshop, или другая программа в соответствии с установками генерации 24-битного RGB. производит цветовую интерполяцию — усредняет оттенки. Результат получается лучше, хотя это видно только на катиброванных мониторах и на качественных распечатках.
Цифровые камеры. Качество цифровой камеры зависит от нескольких факторов, включая оптическое качество линзы, матрицы съемки изображения, атгоритмов сжатия и других компонентов. Однако, самый важный детерминант качества изображения _ разрешающая способность матрицы ПЗС: чем больше элементов, тем выше разрешающая способность, и таким образом, больше подробностей может быть зафиксировано.
В 1997 г. типичная разрешающая способность цифровых камер была 640 х 480 пикселей, год спустя появились «камеры мегапикселя», что подразумевало, что за те же деньги можно было приобрести модель на 1024 х 768 или даже 1280 х 960. К началу 1999 г. разрешающие способности дошли до 1536 х 1024 и к середине этого же года был преодолен барьер 2 мегапикселей с появлением разрешающей способности 1800 х 1200 = 2.16 млн пикселей. Год спустя — барьер 3 мегапикселей (2048 x 1536 = = 3,15 млн пикселей). Первая камера с 4 мегапикселями появилась в середине 2001 г., обеспечивая 2240 х I860 = 4,16 млн пикселей.
Однако даже датчик Foveon ХЗ (4096 х 4096 = 16,8 млн пикселей) [25] все еще не перекрывает возможностей обычной фотопленки. Поскольку высококачественные линзы объективов обеспечивают разрешение по крайней мере 200 точек на 1 мм, негативная пленка стандарта 100ASA шириной 35 мм и размером кадра 24 х 36 мм обеспечит разрешение 24 х 200 х 36 х 200 = = 34,56 млн пикселей, что все еще недостижимо для цифровых камер.
Разрядная глубина
Разрядная (битовая, цветовая) глубина сканера характеризует количество информации, содержащейся в одном пикселе выходного образа. Битовую глубину изображения часто называют цветовой разрешающей способностью. Она измеряется в битах на пиксел (bit per pixel, bpp). Так, если речь идет об иллюстрации, имеющей в каждом пикселе по 8 бит цветовой информации, то ее цветовая разрешающая способность будет 8 bpp, что дает 28 = 256 доступных для 8-битового изображения цветов.
Самый простой сканер (черно-белый сканер на 1 бит) использует для представления каждого пикселя «1» или «0». Чтобы воспроизвести полутона между черным и белым, сканер должен иметь хотя бы 4 бита (для 16 = 24 полутонов) или 8 бит (для 256 = 28 полутонов) на каждый пиксель.
Самые современные цветовые сканеры поддерживают не менее 24 бит, что означает фиксацию 8 бит информации по каждому из первичных цветов (красный, синий, зеленый). Устройство на 24 бита может теоретически фиксировать более чем 16 млн различных цветов, хотя практически это число намного меньше. Это почти фотографическое качество, и упоминается поэтому обычно как «полноцветное» сканирование («true colour» scanning).
На принципе 8-битного цвета основана широко использовавшаяся в первой половине 90-х и применяемая в Internet даже сегодня цветовая модель Index Color. Она работает на основе создания палитры цветов. Все оттенки в файле делятся на 256 возможных вариантов, каждому из которых присваивается номер. Далее, на основе получившейся палитры цветов строится таблица, где каждому номеру ячейки приписывается цветовой оттенок в значениях RGB.
К форматам файлов, использующим только индексированные палитры относятся распространенный в прошлом на PC формат программы Paint — PCX. а также не потерявший и в наши дни своей актуальности GIF. Некоторые форматы как, например, тот же GIF или PNG. позволяют делать патитры на основе произвольного количества цветов (до 256).
До появления 8-битового цвета из-за малых мощностей персональных компьютеров тех времен использовались палитры из 16 цветов (4 bpp), 4 цветов (2 bpp) и самая первая компьютерная графика была однобитовая — 2 цвета. Однобитовые изображения, называемые Bitmap или. иногда. Lineart, используются и сегодня там, где не требуются цвето-тоновые переходы. Равный по размеру Bitmap-файл в 24 раза меньше, чем файл RGB, и кроме того, очень хорошо сжимается.
Динамический диапазон
Динамически;' диапазон по своей сути подобен разрядной глубине, которая описывает цветовой диапазон сканера, и определяется как функционированием АЦП сканера, так и чистотой света, качеством цветных фильтров и уровнем любых помех в системе.
Динамический диапазон измеряется в шкале от 0,0 (абсолютно белый) до 4,0 (абсолютно черный), и единственное число, данное для конкретного сканера, говорит, сколько оттенков модуль может различить. Большинство цветных планшетных сканеров с трудом воспринимает тонкие различия между темными и светлыми цветами на обоих концах диапазона и имеет динамический диапазон около 2,4. Это. конечно, немного, но обычно достаточно для проектов, где идеальный цвет не самоцель. Для получения большего динамического диапазона следует использовать цветовой планшетный сканер высшего качества с увеличенной разрядной глубиной и улучшенной оптикой. Эти высокопроизводительные модули обычно обеспечивают динамический диапазон между 2.8 и 3.2 и хорошо подходят для большинства приложений, требующих высококачественный цвет (например, офсетная печать). Наиболее близко к пределу динамического диапазона позволяют подойти барабанные сканеры, часто обеспечивающие значения от 3.0 до 3.8.
Теоретически сканер на 24 бита предлагает диапазон 8 бит (256 уровней) для каждого первичного цвета, и различие между двумя из 256 уровней обычно не воспринимается человеческим глазом. К сожалению, наименьшие из значащих битов теряются в шуме, в то время как любые тонатьные исправления после сканирования еще более сужают диапазон. Именно поэтому лучше всего предварительно устанавливать любые исправления яркости и цвета на уровне драйвера сканера перед заключительным сканированием. Более дорогие сканеры с глубиной в 30 или 36 битов имеют намного более широкий диапазон, предлагая более детализированные оттенки, и разрешают пользователю делать тональные исправления, заканчивающиеся приличным 24-битовым изображением. Сканер на 30 битов принимает 10 битов данных на каждый цвет, в то время как сканеры на 36 битов — по 12 битов. Драйвер сканера позволяет пользователю выбрать, какие именно 24 бита из исходных 30 или 36 битов сохранить, а какие — нет. Эта настройка делается путем изменения «кривой цветовой гаммы» (Gamma Curve)» и доступна при обращении к настройке тонов (Tonal .-.djustrr.er.t control) драйвера TWAIN.
Режимы сканирования
Среди разнообразия методов представления изображений в ЭВМ наиболее распространенными являются:
штриховая графика (line art);
полутоновое изображение (greyscale):
цветное изображение (colour).
Штриховая графика — наиболее простой формат. Так как сохраняется только черно-белая информация (в компьютере представлен черный цвет как «1» и белый как «О»), требуется только 1 бит данных, чтобы сохранить каждую точку сканированного изображения. Штриховая графика наиболее подходит при сканировании чертежей или текста.
Полутоновое изображение. В то время как компьютеры могут сохранять и выдавать изображения в полутонах, большинство принтеров не способно печатать различные оттенки серых цветов. Они применяют метод, названный обработкой полутонов, используя точечный растр, имитирующий полутоновую информацию.
Изображения в оттенках серого — наиболее простой метод сохранения графики в компьютере. Человек может различить не более 255 различных оттенков серого, что требует единственного байта данных со значением от 0 до 255. Данный тип изображения составляет эквивалент черно-белой фотографии.
Полноцветные изображения — наиболее объемные и самые сложные, сохраняемые и обрабатываемые в ПК, используют 24 бита (по 8 на каждый из основных цветов), чтобы представить полный цветовой спектр.
Схемы цветообразования
Цвета одних предметов человек видит потому, что они излучают свет, а других — потому, что они его отражают. Когда предметы излучают свет, они приобретают тот цвет, который мы видим. Когда они отражают свет (бумага, например), их цвет определяется цветом падающего на них света и цветом, который эти объекты отражают.
Сегодня диаметрально противоположные способы генерации цвета мониторов и принтеров являются основной причиной искажения экранных цветов при печати. Для того чтобы получать предсказуемые результаты на экране и печати, нужно хорошо представлять работу двух противоположных систем описания цвета в компьютере: аддитивной и еубтрактивной.
Аддитивные и субтрактивные цвета. Аддитивный цвет (от англ. add — добавлять, сктадывать) получается при соединении лучей света разных цветов. В этой системе отсутствие всех цветов представляет собой черный цвет, а присутствие всех цветов — белый. Система аддитивных цветов работает с излучаемым светом, например от монитора компьютера.
В этой системе используются три основных цвета: красный, зеленый и синий (RGB — red. green, blue). Если их смешать друг с другом в равной пропорции, они образуют белый цвет, а при смешивании в разных пропорциях — любой другой.
В системе с у б т р а кт и в н ы х цветов (от англ. subtract — вычитать) происходит обратный процесс: вы получаете какой-либо цвет, вычитая другие цвета из общего луча отраженного света. В этой системе белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие дает черный цвет. Система субтрактивных цветов работает с отраженным светом, например от листа бумаги. Белая бумага отражает все цвета, окрашенная — некоторые поглощает, а остальные отражает.
В системе субтрактивных цветов основными являются голубой, пурпурный и желтый цвета (CMY). противоположные красному, зеленому и синему. Когда эти цвета смешиваются на белой бумаге в равной пропорции, получается черный цвет. Вернее, предполагается, что должен получиться черный цвет. В действительности типографские краски поглощают свет не полностью и поэтому комбинация трех основных цветов выглядит темно-коричневой. Чтобы исправить возникающую неточность, для представления тонов черного цвета принтеры добавляют немного черной краски. Систему цветов, основанную на таком процессе четырехцветной печати, принято обозначать аббревиатурой CMYK (cyan, magenta, yellow, black).
Цветовая модель RGB. Монитор компьютера создает цвет непосредственно излучением света и использует, таким образом, систему цветов RGB. Поверхность монитора состоит из мельчайших точек (пикселей) красного, зеленого и синего цветов, форма точек варьируется в зависимости от типа электронно-лучевой трубки (ЭЛТ). Пушка ЭЛТ подает сигнал различной мощности на экранные пиксели. Каждая точка имеет один из трех цветов, при попадании на нее луча из пушки она окрашивается в определенный оттенок своего цвета в зависимости от силы сигнала. Поскольку точки маленькие, уже с небольшого расстояния они визуально смешиваются друг с другом и перестают быть различимы. Комбинируя различные значения основных цветов, можно создать любой оттенок из более 16 млн цветов, доступных в RGB.
Лампа сканера светит на поверхность захватываемого изображения (или сквозь слайд); отраженный или прошедший через слайд свет с помощью системы зеркал, попадает на чувствительные датчики, которые передают данные в компьютер также в системе RGB. Система RGB адекватна цветовому восприятию человеческого глаза, рецепторы которого тоже настроены на красный, зеленый и синий цвета.
Цветовая модель CMYK. Система цветов CMYK была широко известна задолго до того, как компьютеры стати использоваться для создания графических изображений. Триада основных печатных цветов: голубой, пурпурный и желтый (CMY, без черного) является, по сути, наследником трех основных цветов живописи (синего, красного и желтого). Изменение оттенка первых двух связано с отличным от художественных химическим составом печатных красок, но принцип смешения тот же самый. И художественные, и печатные краски, несмотря на провозглашаемую самодостаточность, не могут дать очень многих оттенков. Поэтому художники используют дополнительные краски на основе чистых пигментов, а печатники добавляют, как минимум, черную краску.
Система CMYK создана и используется для печати. Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK. Этот процесс называется цветоделением.
Цветовые модели HSB и HSL. Системы цветов RGB и CMYK
базируются на ограничениях, накладываемых аппаратным обеспечением (мониторами и сканерами в случае с RGB и типографскими красками в случае с CMYK). Более логичным способом описания цвета является представление его в виде тона, насыщенности и яркости — система HSB. Она же известна как система HSL (тон, насыщенность, освещенность).
Тон представляет собой конкретный оттенок цвета на цветовом круге, отличный от других: красный, зеленый, голубой и т. п. Насыщенность цвета характеризует его относительную интенсивность (или чистоту). Уменьшая насыщенность, например, красного, мы делаем его более пастельным, приближаем к серому. Яркость (или освещенность) цвета показывает величину затемнения или осветления исходного оттенка.
HSB имеет перед другими системами важное преимущество: она больше соответствует природе цвета, хорошо согласуется с моделью восприятия цвета человеком. Многие оттенки можно быстро и удобно получить в HSB. конвертировав затем в RGB или CMYK, доработав в последнем случае, если цвет был искажен.
Цветовая модель Grayscale. Цветовая модель Grayscale представляет собой ту же индексированную палитру, где вместо цвета пикселям назначена одна из 256 градаций серого. На основе Grayscale легко можно понять строение RGB- и CMYK-файлов.
В RGB для описания цвета используются 24 бита, которые делятся на три группы по 8 бит. Одна группа используется для хранения в пикселе красного цвета, две другие — зеленого и синего. Они могут дать до 16 700 тыс. комбинаций оттенков. Аналогичным образом в CMYK существуют четыре группы, для описания цвета используются 32 Ьрр. Если RGB имеет стандартные 256 градаций яркости, то в CMYK яркость измеряется в процентах (т. е. до 100). Несмотря на большую, чем в RGB, цветовую глубину в 32 бита на пиксел, диапазон оттенков CMYK значительно меньше, чем в RGB. так как CMYK является не более чем имитацией на экране печатных цветов.