Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГИДРА - главы 10,11,12.doc
Скачиваний:
52
Добавлен:
17.09.2019
Размер:
2.75 Mб
Скачать

Защита трубопроводов от гидравлических ударов

Необходимость считаться с разрушительной силой гидравлического удара в трубопроводах, транспортирующих тяжелые капельные жидкости (нефть, нефтепродукты, воду и т.п.), выражается в том, что на подобных трубопроводах (в отличие от газопроводов) не устанавливают краны, слишком быстро перекрывающие сечение трубопровода, а используют вентильные или шиберные задвижки, а также медленно закрывающиеся краны. И те, и другие должны обеспечить безопасное торможение жидкости в трубопроводе.

В ряде случаев на перекачивающих станциях (ПС) устанавливают специальные устройства, призванные защитить трубопровод от волн гидравлического удара. Например, на линиях всасывания ПС устанавливают гасители гидравлического удара - предохранительные клапаны (ПК) или системы сглаживания волн давления (ССВД) на случай, если ПС внезапно отключится и давление перед ней начнет повышаться. И те, и другие устройства работают по принципу аварийного сброса части жидкости из трубопровода в специальный резервуар для снижения величины и темпа нарастания давления. Предохранительные клапаны открывают сброс жидкости при увеличении давления больше чем на определенную величину, называемую установкой защиты, а системы сглаживания волн давления срабатывают тогда, когда темп нарастания давления в линии всасывания ПС превысит допустимое значение.

12.3. Расчет неустановившихся течений жидкости в трубопроводе

К наиболее распространенным причинам возникновения в трубопроводе неустановившихся течений относятся:

  • режим, возникающий в трубопроводе при пуске или остановке перекачивающей станции;

  • режим, возникающий в трубопроводе при включении или отключении одного из насосных агрегатов;

  • режим частичного или полного перекрытия трубопровода задвижкой;

  • режим начала путевых сбросов или подкачек жидкости, включения лупингов, отводов и перемычек и т.п.;

  • различные аварийные ситуации, связанные, в частности, с разрывом трубопровода.

Расчет неустановившихся течений жидкости в трубопроводе (переходных процессов) осуществляется на базе дифференциальных уравнений, выражающих законы сохранения массы и количества движения транспортируемой жидкости, а также начальных и краевых условий, моделирующих взаимодействие трубопровода с установленным на нем оборудованием и отражающих причину возникновения неустановившегося течения.

Дифференциальные уравнения неустановившегося течения жидкости

Таких уравнений два. Первое из них - уравнение неразрывности потока, выражающее закон сохранения массы транспортируемой жидкости (рис.12.5).

x

Рис. 12.5. К выводу уравнений неустановившегося течения жидкости

Рассмотрим два близко расположенные сечения и трубопровода. Тогда закон сохранения массы жидкости можно сформулировать следующим образом: изменение массы жидкости в области между рассматриваемыми сечениями за время равно разности масс жидкости - , втекающей через сечение , и , вытекающей через сечение . Таким образом, имеем уравнение:

,

в котором нижний индекс показывает, в каком сечении берутся соответствующие параметры течения.

Поскольку с точностью до малых высшего порядка имеет место равенство

,

получаем первое дифференциальное уравнение:

, (12.9)

где ; ; неизвестные функции и .

Для установившегося течения частная производная по времени в уравнении (12.9) равна нулю, поэтому из него следует: , т.е. массовый расход жидкости постоянен по длине трубопровода.

Уравнение (12.9) называется уравнением неразрывности.

Второе уравнение, называемое уравнением движения жидкости, выражает второй закон Ньютона. Для удобства его можно сформулировать так: изменение количества движения любого фиксированного элемента жидкости за время , равно суммарному импульсу всех внешних сил, действующих на этот элемент. В качестве элемента жидкости возьмем жидкость, заключенную в момент времени между сечениями и трубопровода. Учитывая, что этот элемент в момент времени займет новое положение, изменение его количества движения можно записать в следующем виде:

.

Первый член в правой части равенства дает изменение за время количества движения элемента, как если бы он был неподвижен, а два другие члена учитывают движения элемента в трубопроводе: добавляется количество движения частиц, ушедших из рассматриваемого элемента через сечение , и вычитается количество движения частиц, пришедших в рассматриваемый элемент через сечение .

Таким образом, с точностью до малых высшего порядка малости можно написать:

.

Проекция суммарного импульса всех внешних сил, действующих на жидкость в рассматриваемом элементе, на ось трубопровода включает следующие слагаемые:

  • импульс сил давления на торцах элемента;

  • импульс сил реакции стенок трубопровода;

  • импульс сил трения жидкости о внутреннюю поверхность трубопровода;

  • импульс сил тяжести, где угол наклона оси трубопровода к горизонту: .

Таким образом, второй закон Ньютона можно представить в следующем виде:

или

. (12.10)

Выполнив дифференцирование произведений в левой части уравнения (12.10), получим

В силу уравнения неразрывности (12.9) первое слагаемое в правой части уравнения равно 0, поэтому имеем:

или

(12.11)

Система уравнений (12.9-12.10) или (12.9-12.11) служит основой для описания неустановившихся течений жидкости в трубопроводе.