Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Металловеденье.docx
Скачиваний:
22
Добавлен:
17.09.2019
Размер:
1.03 Mб
Скачать

Твердость по Бринеллю

Испытание проводят на твердомере Бринелля (рисунок 3 а).

В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – P=30D2, литой бронзы и латуни – P=10D2, алюминия и других очень мягких металлов – P=2,5D2.

Продолжительность выдержки : для стали и чугуна – 10 с, для латуни и бронзы – 30 с.

Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:   Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / τ, НВ 5/250/30 – 80.

Метод Роквелла

Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рисунок 3 б)

Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16” (Ø1,6 мм), для более твердых материалов – конус алмазный.

Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка P0 (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р1, в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой P0. В зависимости от природы материала используют три шкалы твердости (таблица 1)

Таблица 1 — Шкалы для определения твердости по Роквеллу

Шкала

Обозначение

Индентор

Нагрузка, кг

Область применения

 P0

 P1

 P2

A

HRA

 Алмазный конус

10

50

60

Для особо твердых материалов

B

HRB

Стальной закаленный шарик

10

90

100

Для относительно мягких материалов

C

HRC

 Алмазный конус

10

140

150

Для относительно твердых материалов

 

Метод Виккерса

Твердость определяется по величине отпечатка (рисунок 3 в).

В качестве индентора используется алмазная четырехгранная пирамида с углом при вершине 136°.

Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:   Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

Аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 кгс:

 

Метод царапания

Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

Динамический метод (по Шору)

Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

В результате проведения динамических испытаний на ударный изгиб специальных образцов с надрезом (ГОСТ 9454) оценивается вязкость материалов и устанавливается их склонность к переходу из вязкого состояния в хрупкое.

Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.

Является энергетической характеристикой материала, выражается в единицах работы. Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.

Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).

3

Начертите диаграмму состояния железо-цементит обоснуйте выбор режима термической обработки, применяемой для устранения цементитной сетки в заэвтектоидной стали. Дайте определение выбранного режима термической обработки и опишите превращения, которые происходят при нагреве и охлаждении.

Для устранения грубой сетки вторичного цементита заэвтектоидные стали подвергают нормализации. Нормализацией называется нагрев доэвтектоидной стали до температуры выше Ас3, а заэвтектоидной – выше Аcm на 40-50°С с последующим охлаждением на воздухе.

При температуре нагрева заэвтектоидной стали выше Аcm на 40-50°С имеем структуру аустенита (100%). При снижении температуры до Аrm начинают появляться первые зерна цементита. При дальнейшем снижении температуры до Аr1 из аустенита будут образовываться только зерна цементита, а содержание углерода в остающемся аустените будет уменьшаться и при температуре Аr1 достигнет 0,8%. Ускоренное охлаждение на воздухе способствует тому, что цементит не успевает образовать грубую сетку, понижающую свойства стали. При снижении температуры ниже Аr1 из аустенита будет образовываться перлит.

Заэвтектоидная сталь после нормализации имеет структуру перлита и цементита.

 

4

Вычертите диаграмму изотермического превращения аустенита для стали У8. Нанесите на нее кривую режима изотермической обработки, обеспечивающей получение твердости 150 HB. Укажите, как этот режим называется, опишите сущность превращений и какая структура получается в данном случае.

Изотермической обработкой, достаточной для получения твердости НВ = 150 для стали У8, является изотермический отжиг (рисунок 5). Структура после отжига – крупнопластинчатый перлит. При изотермическом отжиге сталь У8 нагревают до температуры на 30-50°С выше точки Ас1с1 = 730°С) и после выдержки охлаждают до температуры 650-680°С. Структура после отжига – крупнопластинчатый перлит.

Рисунок 5 – Диаграмма изотермического превращения аустенита стали У8

Перлитное превращение переохлажденного аустенита протекает при температурах Ar1 = 500ºC. В процессе превращения происходит полиморфное γ→α-превращение и диффузионное перераспределение углерода в аустените, что приводит к образованию ферритно-цементитной структуры: А→Ф + Fe3C = Перлит.

Аустенит, практически однородный по концентрации углерода, распадается с образованием феррита и цементита, содержащего 6,67%С, т.е. состоит из двух фаз, имеющих различную концентрацию углерода. Ведущей, в первую очередь возникающей фазой при этом является карбид (цементит). Его зародыши, как правило, образуются на границах зерен аустенита.

В результате роста частиц этого карбида прилегающий к нему объем аустенита обедняется углеродом, снижает свою устойчивость и испытывает полиморфное γ→α-превращение. При этом кристаллики феррита зарождаются на границе с цементитом, который облегчает этот процесс.

Последующий рост ферритных пластинок ведет к обогащению окружающего аустенита углеродом, что затрудняет дальнейшее развитие γ→α-превращения. В обогащенном таким образом углеродом аустените зарождаются новые и растут ранее возникшие пластинки цементита. Вследствие этих процессов образования и роста частиц карбидов вновь создаются условия для возникновения новых и роста имеющихся кристалликов (пластинок) феррита. В результате происходит колониальный (совместный) рост кристалликов феррита и цементита, образующих перлитную колонию.

Оловянные латуни (кроме латуни Л062-1) хорошо обрабатываются давлением в горячем и холодном состоянии, обладают высокой коррозионной стойкостью в пресной и морской воде. Из латуней Л090-1, Л070-1, Л062—I, ЛО70-1, ЛОМш70-1-0,05 изготовляют конденсаторные трубки, теплотехническую аппаратуру и детали для морского судостроения.

Коррозионная стойкость латуни Л090-1 в морской воде составляет 0,4-0,5 г/(м2.сутки), а мягкой латуни Л070-1-0,55 г/(м2.сутки); в 10 % -ном растворе H2S04- 1,65 г/(м2.сутки).