
- •1.Общие понятия об оптических м-дах
- •2.Понятие м-да и м-дики анализа. Характеристики м-дики.
- •3.4.Физ. Основы рефрактометрического м-да. Коэффициент преломления.
- •5. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.
- •6. Принцип действия рефрактометра Аббе.
- •7. Принцип действия рефрактометра Пульфриха.
- •8. Применение рефрактометрии для идентификации в-ва и контроля качества.
- •9. Физ. Основы поляриметрического м-да.
- •10.11. Типы оптической активности.
- •12. Зависимость угла вращения пл-сти поляризации от строения в-ва
- •13. Спекрополяриметрический м-д.
- •14. Принцип действия кругового поляриметра. Схема прибора.
- •15. Устройство клиновых поляриметров.
- •16. Применение поляриметрии и спектрополяриметрии.
- •17. Физ. Основы нефелометрии и турбидиметрии. Рассеяние и поглощение света.
- •18. Основные требования к химическим реакциям и условия их проведения.
- •19. Приборы нефелометрического анализа.
- •20. Применение нефелометрии и турбидиметрии.
- •21. Основные характеристики электромагнитного излучения. Классификация м-дов спектрального анализа.
- •22.Физ. Основы спектрального анализа.
- •23. Схемы энергетических переходов в атомных спектрах.
- •24. Схемы энергетических переходов в молекулярных спектрах.
- •25. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
- •28. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
- •29.Основные характеристики атомно-эмиссионных спектрометров.
- •31. Структура таблиц характеристических спектров элементов и атласов спектров.
- •30. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
28. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
Детектирование излучения в атомно-эмиссионных приборах может проводиться тремя м-дами: визуально, с использованием фотографических детекторов (пленки или стеклянные пластинки с нанесенным на них слоем фотоэмульсии-слоя желатина), с использованием фотоэлектрических детекторов (преобразуют световую энергию в электрический сигнал).
Визуальное детектирование используется в простейших приборах — стилоскопах, стилометрах. Глаз человека как детектор ограничен по диапазону воспринимаемого излучения и субъективен.
Фотографические детекторы — это пленки или стеклянные пластинки с нанесенным на них слоем фотоэмульсии - слоя желатина, в котором распределена взвесь кристаллов AgBr. Под действием излучения в эмульсии формируется т.н. скрытое изображение, а после проявления и закрепления вследствие выделения металисеского серебра в местах, на которое попало освещение, наблюдается почернение эмульсии.
Обычные фотопластинки чувствительны к спектральным интервале от 230 до 500 нм. В более широкой спектральной области ( ≈ до 1000 нм) применяются т.н. сенсибилизированные пластинки.
Достоинства: -возможность одновременно регистрировать широкий спектральный интервал длин волн; -документальность; -кумулятивность, т.е. способность суммиронать во времени количество излучения, которое приводит к выделению серебра. Недостатки: низкая оперативность регистрации, дополнительный расход реактивов, изменение параметром эмульсии при длительном хранении, нелинейность зависимости почернения от освещенности и времени экранирования, влияние почернения трудно учитываемых факторов (λ, Т, состав проявителя).
Фотоэтлектрическое детектирование основано на преобразовании световой энергии в электрический сигнал. Мерой интенсивности спектральной линии служит величина этого сигнала — сила тока или напряжение. Фотоэлектрические приемники реагируют на число фотонов, падающих на приемный элемент, и подразделяются на:
приемники с внешним фотоэффектом, основанным на отрыве электрона от поверхности, на которую падает фотон. Это фотоэлементы, фотоумножители' (ФЭУ), электронно-оптические преобразователи (ЭОП);
приемники с внутренним фотоэффектом (увеличение электрической проводимости проводника под действие света) —фоторезисторы, фотогальванические приемники, фотодиоды.
Фотоэлемент с внешним фотоэффектом состоит из фотокатода и анода, помещенных в колбу.
Под действием света из катода, покрытого слоем соединения щелочного металла (Cs2O, Cs3Sb, K2CsSb и др.), вырываются электроны, которые, попадая на анод, замыкают цепь — гальванометр показывает наличие тока. Фотоэлементы с внешним фотоэффектом чувствительны в широкой области спектра, имеют линейные световые характеристики и практически безынерционны. Однако чувствительность фотоэлементов с внешним фотоэффектом невелика, они хрупки и имеют т.н. темновой ток
29.Основные характеристики атомно-эмиссионных спектрометров.
- спектральный диапазон прибора, линейная и угловая дисперсия, разрешающая способность.
Спектральный диапазон прибора -это область спектра, регистрируемая прибором. У призменных приборов спектральный диапазон ограничен прозрачностью материала призм, особенностями конструкции прибора и областью чувствительности приемника света. Спектральный диапазон приборов с дифракционной решеткой, если в схеме нет оптических деталей, поглощающих свет, ограничен лишь поглощением света воздухом и обычно равен 200-1000 нм. Это наиболее универсальные приборы, позволяющие регистрировать аналитические линии большинства элементов.
Спектральный диапазон прибора можно расширить в сторону
более коротких волн, вакуумируя прибор, удаляя кислород воздуха, поглощающий коротковолновое УФ излучение.
Линейная дисперсия εлин. показывает, на каком расстоянии друг от друга находятся две спектральные линии, если их длины волн различаются на 1А°или на 1 нм. Эта величина определяется отношением
εлин. = ΔL/Δλ ,
где ΔL - расстояние между двумя линиями на фокальной поверхности прибора, мм; Δλ - разность длин волн этих линий, А° или нм, Очень часто пользуются величиной, обратной линейной дисперсии:
1/εлин = Δλ/ΔL , которая показывает, какой участок спектра в А0 помещается на 1 мм фокальной поверхности прибора.
Угловая дисперсия εугл измеряется величиной угла, на к-ый расходятся монохроматические пучки света, если разность их длин волн равна 0,1 нм. Угловая и линейная дисперсии призменного прибора зависят от материала призм, угла падения света на их преломляющие грани, от величины преломляющего угла а, от длины волны света. Угловая и линейная дисперсии призменного прибора уменьшаются с увеличением длины волны.
Разрешающая способность R спектрального прибора -это отношение λ/Δλ
R = λ/Δλ, где Δλ- разность волн двух соседних линий λ1 и λ2, которые еще прибор разделяет при самых узких щелях; λ - средняя длина волны, равная λ=(λ1+λ2) / 2.
На практике разрешающая способность призменного прибора тем больше, чем больше диаметр объектов и преломляющая поверхностъ призм и чем больше угловая дисперсия. Разрешающая способность приборов с дифракционной решеткой тем больше, чем больше общее число штрихов и чем выше порядок спектра. Разрешающая способность призменного прибора уменьшаетсятся по мере увеличения длины волны, а дифракционного - не зависит от λ.