Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все лекции ТИПиС.doc
Скачиваний:
25
Добавлен:
15.09.2019
Размер:
2.83 Mб
Скачать

Проверка адекватности модели

Количественную оценку адекватности модели объекту исследования проводят для случая, когда можно определить значения отклика системы в ходе натурных испытаний.

Наиболее распространены три способа проверки:

  • по средним значениям откликов модели и системы;

  • по дисперсиям отклонений откликов;

  • по максимальному значению абсолютных отклонений откликов.

Если возможность измерения отклика реальной системы отсутствует, оценку адекватности модели проводят на основе субъективного суждения соответствующего должностного лица о возможности использования результатов, полученных с использованием этой модели, при выполнении им служебных обязанностей (в частности — при обосновании решений).

Калибровка имитационной модели

К калибровке имитационной модели приступают в случае, когда модель оказывается неадекватной реальной системе. За счет калибровки иногда удается уменьшить неточности описания отдельных подсистем (элементов) реальной системы и тем самым повысить достоверность получаемых модельных результатов.

В модели при калибровке возможны изменения трех типов:

  • глобальные структурные изменения;

  • локальные структурные изменения;

  • изменение так называемых калибровочных параметров в результате реализации достаточно сложной итерационной процедуры, включающей многократное построение регрессионных зависимостей и статистическую оценку значимости улучшения модели на очередном шаге.

При необходимости проведения некоторых локальных и особенно глобальных структурных изменений приходится возвращаться к содержательному описанию моделируемой системы и искать дополнительную информацию о ней.

Исследование свойств имитационной модели

После испытаний имитационной модели переходят к изучению ее свойств. При этом наиболее важны четыре процедуры:

  • оценка погрешности имитации;

  • определение длительности переходного режима в имитационной модели;

  • оценка устойчивости результатов имитации;

  • исследование чувствительности имитационной модели.

Оценка погрешности имитации, связанной с использованием в модели генераторов псевдослучайных чисел (псч)

Исследование качества генераторов ПСЧ проводится известными методами теории вероятностей и математической статистики. Важнейшим показателем качества любого генератора ПСЧ является период последовательности ПСЧ (при требуемых статистических свойствах). В большинстве случаев о качестве генератора ПСЧ судят по оценкам математических ожиданий и дисперсий отклонений компонент функции отклика. Как уже отмечалось, для подавляющего числа практических задач стандартные (встроенные) генераторы дают вполне пригодные последовательности ПСЧ.

Определение длительности переходного режима

Обычно имитационные модели применяются для изучения системы в типичных для нее и повторяющихся условиях. В большинстве стохастических моделей требуется некоторое время для достижения моделью установившегося состояния.

Под статистическим равновесием или установившимся состоянием модели понимают такое состояние, в котором противодействующие влияния сбалансированы и компенсируют друг друга. Иными словами: модель находится в равновесии, если ее отклик не выходит за предельные значения.

Существуют три способа уменьшения влияния начального периода на динамику моделирования сложной системы:

  • использование "длинных прогонов", позволяющих получать результаты после заведомого выхода модели на установившийся режим;

  • исключение из рассмотрения начального периода прогона;

  • выбор таких начальных условий, которые ближе всего к типичным.

Каждый из этих способов не свободен от недостатков: "длинные прогоны" приводят к большим затратам машинного времени; при исключении из рассмотрения начального периода теряется часть информации; выбор типичных начальных условий, обеспечивающих быструю сходимость, как правило, затруднен отсутствием достаточного объема исходных данных (особенно для принципиально новых систем).

Для отделения переходного режима от стационарного у исследователя должна быть возможность наблюдения за моментом входа контролируемого параметра в стационарный режим. Часто используют такой метод: строят графики изменения контролируемого параметра в модельном времени и на нем выявляют переходный режим.

На рис. 2 представлен график изменения -го контролируемого параметра модели в зависимости от модельного времени . На рисунке видно, что, начиная со времени , этот параметр "вошел" в установившийся режим со средним значением .

Если построить подобные графики для всех (или большинства существенных) контролируемых параметров модели, определить для каждого из них длительность переходного режима и выбрать из них наибольшую, в большинстве случаев можно считать, что после этого времени все интересующие исследователя параметры находятся в установившемся режиме.

Рис. 2. Определение длительности переходного периода для -гo

контролируемого параметра модели.

На практике встречаются случаи, когда переходные режимы исследуются специально. Понятно, что при этом используют "короткие прогоны", исключают из рассмотрения установившиеся режимы и стремятся найти начальные условия моделирования, приводящие к наибольшей длительности переходных процессов. Иногда для увеличения точности результатов проводят замедление изменения системного времени.