
- •3. Прикладна теорія цифрових автоматів.
- •Двійкова сч. Переваги і недоліки двійкової сч. Переведення довільного числа з десяткової сч в двійкову сч і навпаки. Двійкова позиційна система числення
- •Переведення числа з двійкової системи числення в десяткову та з десяткової у двійкову
- •2. Двійкова арифметика (виконання операцій додавання, віднімання, множення і ділення в 2-сч).
- •7. Основні властивості двійкових чисел. Правила «швидкого рахунку». Двійкова арифметика
- •3. Шістнадцяткова сч. Шістнадцяткова арифметика.
- •4. Сч з основою р. Переведення довільного числа з десяткової сч в сч з основою р і навпаки. Системи числення з довільною основою
- •5. Виконання арифметичних дій в сч з основою р.
- •6. Змішані сч. Запис чисел в змішаних сч. Системи з кратними основами. Теорема для сч з кратними основами
- •8. Дві форми комп’ютерного представлення числових даних. Їх переваги і недоліки. Діапазон представлення чисел в цих випадках. Представлення комп’ютерної інформації Форма з фіксованою крапкою
- •Форма з плаваючою крапкою
- •9. Представлення довільного числа в формі з плаваючою крапкою. Мантиса та порядок числа. Нормалізована форма представлення числа. Форма з плаваючою крапкою
- •11. Поняття про булеві функції. Три способи задання булевих функцій. Таблиця істинності. Номер двійкового набору. Повністю та неповністю визначені булеві функції. Основні поняття
- •12. Основні булеві функції однієї і двох зміних. Унарна і бінарні операції булевої алгебри. Суперпозиція булевих функцій. Три аксіоми булевої алгебри. Алгебра Жегалкіна. Теореми де Моргана.
- •15. Метод Квайна. Співвідношення склеювання та поглинання. Метод Квайна-Мак-Класкі. Метод діаграм Вейча. Сусідні набори. Загальне правило склеювання на діаграмі Вейча. Метод квайна
- •Метод квайна-мак-класкі
- •Метод діаграм вейча
4. Сч з основою р. Переведення довільного числа з десяткової сч в сч з основою р і навпаки. Системи числення з довільною основою
Ми розглянули алгоритм переводу чисел з двiйкової системи числення в десяткову i навпаки - з десяткової в двiйкову. Алгоритми залишаться цiлком аналогiчними, якщо замiсть двiйкової системи числення взяти будь-яку iншу.
Нехай, наприклад, деяке число записане в вiciмковiй системi числення. Це значить, що цифри в записі цього числа є коєфiцiєнти в його розкладi по степенях числа 8:
(anan-1...a1a0, a-1a-2...)8 =an*8n+an-1*8n-1+...+a1*8+a0+a-1*8-1+...
Для того,щоб отримати зображення цього числа в десятковiй системi числення, достатньо виконати, користуючись десятковою арифметикою, всi операцiї в правiй частинi цього виразу.
П р и к л а д. Перевести число (276,54)8 з вiсiмкової системи числення в десяткову:
(276,54)8=2*82+7*81+6*80+5*8-1+4*8-2=
=128+56+6+5/8+4/64=(190,6875)10.
Нехай тепер потрiбно перевести число з десяткової системи числення в вiсiмкову. Як i у випадку переводу в двiйкову систему числення, розглянемо окремо цiлу i дробову частини чисел. Для цiлої частини скористаємось алгоритмом дiлення, а для дробової - множення. В першому випадку ми отримаєм шукане вiсiмкове зображення цiлого числа, зiбравши в зворотньому порядку залишки вiд дiлення на 8, а у другому випадку отримаємо вiсiмкове зображення дробу, зiбравши в прямому порядку цiлi частини при послiдовному множеннi на 8.
П р и к л а д. Перевести число (190,6875)10 з десяткової системи числення в вiсiмкову.
Переведемо цiлу частину:
190 | 8
16 | 23 | 8
30 16 | 2 | 8 (190)10=(276)8
8
Переведемо дробову частину:
0 | 6875 (0,6875)10=(0,54)8
5 | 5000
4 | 0
тобто (190,6875)10 =(276,54)8.
Цей приклад разом з попереднiм iлюструє, як можна перевiряти правильнiсть переводу з однiєї системи числення в iншу зворотнiм переводом.
5. Виконання арифметичних дій в сч з основою р.
Перед тим, як розглянути формальні правила двійкової арифметики підкреслимо загальний принцип складання і віднімання чисел представлених в будь-якої позиційної системи числення.
У загальному випадку процедури складання і віднімання двох чисел
A B = C в будь-якої позиційної системи числення починаються з молодших розрядів.
Код суми каждго i-того розряду сi виходить в результаті складання
ai + bi +1, де одиниця відповідає перенесенню з молодшого (i - 1) -разряда в i-тый, якщо в молодшому розряді код суми вийшов більше або рівним підставі системи числення.
Код різниці кожного i-того розряду виходить в результаті віднімання
ai - bi -1, де одиниця відповідає заему, якщо він був, в молодші розряди величини, рівної підставі системи числення.
Отже, правила і методи складання і віднімання в будь-якої позиційної системи числення в принципі залишаються такими ж, як в десятковій системі.
Для переведення цілої частини десяткової системи числення в систему числення з основою Р, потрібно послідовно ділити на основу Р до тих пір, поки частка не стане меншою за Р. Отримана частка та остачі записують у зворотному порядку
Дробова частина 10-го числа послідовно множиться на Р до тих пір поки вона не стане рівна 0. Якщо в завданні вказується розрядна сітка, то переведення здійснюють таким чином, щоб заповнити розрядну сітку інакше буде вказано кількість розрядів після коми які потрібно представити
Ми розглянули алгоритм переводу чисел з двiйкової системи числення в десяткову i навпаки - з десяткової в двiйкову. Алгоритми залишаться цiлком аналогiчними, якщо замiсть двiйкової системи числення взяти будь-яку iншу.
Нехай, наприклад, деяке число записане в вiciмковiй системi числення. Це значить, що цифри в записі цього числа є коєфiцiєнти в його розкладi по степенях числа 8:
(anan-1...a1a0, a-1a-2...)8 =an*8n+an-1*8n-1+...+a1*8+a0+a-1*8-1+...
Для того,щоб отримати зображення цього числа в десятковiй системi числення, достатньо виконати, користуючись десятковою арифметикою, всi операцiї в правiй частинi цього виразу.
П р и к л а д. Перевести число (276,54)8 з вiсiмкової системи числення в десяткову:
(276,54)8=2*82+7*81+6*80+5*8-1+4*8-2=
=128+56+6+5/8+4/64=(190,6875)10.
Нехай тепер потрiбно перевести число з десяткової системи числення в вiсiмкову. Як i у випадку переводу в двiйкову систему числення, розглянемо окремо цiлу i дробову частини чисел. Для цiлої частини скористаємось алгоритмом дiлення, а для дробової - множення. В першому випадку ми отримаєм шукане вiсiмкове зображення цiлого числа, зiбравши в зворотньому порядку залишки вiд дiлення на 8, а у другому випадку отримаємо вiсiмкове зображення дробу, зiбравши в прямому порядку цiлi частини при послiдовному множеннi на 8.
П р и к л а д. Перевести число (190,6875)10 з десяткової системи числення в вiсiмкову.
Переведемо цiлу частину:
190 | 8
16 | 23 | 8
30 16 | 2 | 8 (190)10=(276)8
8
Переведемо дробову частину:
0 | 6875 (0,6875)10=(0,54)8
5 | 5000
4 | 0
тобто (190,6875)10 =(276,54)8.
Цей приклад разом з попереднiм iлюструє, як можна перевiряти правильнiсть переводу з однiєї системи числення в iншу зворотнiм переводом.