
- •Ознаки, зчеплені зі статтю.
- •Вторинна структура білків: типи, механізми стабілізації та роль регулярної вторинної структури в утворенні просторової структури глобулярних білків.
- •Природна і експериментальна поліплоїдія. Типи поліплоідів.
- •Характеристика популяції як елементарної одиниці еволюції.
- •Нековалентні міжмолекулярні взаємодії: типи, механізми виникнення та роль у підтриманні просторової структури біологічних макромолекул.
- •Множинний алелізм. Серії множинних алелей і механізм їх виникнення.
- •Боротьба за існування як елементарний фактор еволюції.
- •Фізична природа та біологічна роль водневого зв’язку та гідрофобних взаємодій.
- •Структурна організація і класифікація хромосом
- •Ізоляція як фактор еволюції.
- •Просторова структура глобулярних водорозчинних білків і основні механізми її стабілізації.
- •Балансова теорія визначення статі Бріджеса.
- •Природний добір як провідний фактор еволюції. Форми добору.
- •Принципи ферментативного каталізу.
- •Рівновага в популяції, закон Харді-Вайнберга
- •Біологічний прогрес і біологічний регрес.
- •Принципи використання вільної енергії гідролізу нуклеозидтрифосфатів для здійснення енергетично невигідних молекулярних процесів у біологічних системах.
- •Фактори динаміки популяцій та еволюція.
- •Основні етапи антропогенезу
- •Приклади молекулярних машин та загальні принципи їх функціонування.
- •Мейоз, основні фази, генетичне значення. Поведінка хромосом при мейозі як основа явища розщеплення і рекомбінації хромосом
- •Механізми м’язового скорочення
- •Хімічні компоненти нуклеїнових кислот, їх властивості та класифікація. Будова полінуклеотидного ланцюга.
- •Спадкування кількісних ознак. Полімерні гени.
- •Механізми передачі нервового імпульсу по аксону
- •Структура подвійних спіралей нуклеїнових кислот та механізми її стабілізації. Структурні форми подвійних спіралей.
- •Поняття про мутації, характерні риси спонтанного мутаційного процесу.
- •Плани будови прокаріотичної та еукаріотичної клітини
- •Рівні структурної організації хроматину еукаріотів. Структура нуклеосоми та хроматинової фібрили.
- •Регуляція активності генів у прокаріотів. Структура оперона.
- •Теорії походження еукаріотичної клітини
- •Принципи організації геномів про- та еукаріотів.
- •Закони спадкової передачі ознак, відкриті г.Менделем.
- •Будова, властивості та функції біологічних мембран.
- •Мобільні елементи в геномах: типи та молекулярні механізми переміщення.
- •Хромосомні типи визначення статі.
- •Ультраструктурна організація мітохондрій
- •Ініціація транскрипції в еукаріотів. Базальні транскрипційні фактори та збірка преініціаторного комплексу рнк-полімерази іі.
- •Порівняльна характеристика мутаційної та модифікаційної мінливості.
- •Поняття про цитоскелет та його структурні елементи
- •Структура і властивості генетичного коду.
- •Клітинний цикл та його регуляція
- •Транскрипційні фактори та базові механізми їх участі в регуляції транскрипції в еукаріотів.
- •Генеалогічний метод в генетиці людини. Складання родоводів.
- •Мітоз, його біологічне значення. Фази мітозу.
- •Мікро-рнк та їх участь в регуляції експресії генетичної інформації. Рнк-інтерференція.
- •Типи взаємодій між алелями одного гену.
- •Статевий процес та його біологічне значення.
- •Типи взаємодій неалельних генів.
- •Яйцеклітина, її хімічний склад, будова та різноманітність типів живлення.
- •Процессинг мРнк: етапи, синхронізація із транскрипцією, біологічна роль.
- •Гамети та їх утворення.
- •Структура й біологічна роль тРнк.
- •Організація геномів еукаріот.
- •Запліднення та його біологічне значення; особливості зовнішнього та внутрішнього запліднення.
- •Аміноацил-тРнк-синтетази, їх функція та реакції, які вони каталізують.
- •Соціальні аспекти генетики людини. Сутність евгеніки.
- •Елонгаційний цикл білкового синтезу. Молекулярні механізми зв’язування аміноацил-тРнк, транспептидації та транслокації.
- •Плейотропна дія генів, приклади.
- •Дроблення та його біологічне значення; особливості поділу клітин в період дроблення.
- •Ініціація трансляції у про- та еукаріотів.
- •Кросинговер, інтерференція, коінциденція.
- •Стадія бластули. Типи бластул
- •Склад та структура рибосоми. Взаємодія рибосоми з мРнк та тРнк. Функціональна роль рибосомних субодиниць.
- •Типи визначення статі
- •Стадія гаструли. Типи гаструляційних переміщень (інвагінація, епіболія, імміграція, делямінація).
- •Основні компоненти реплісоми та їх функціональна роль.
- •Спадкування ознак залежних від статі та обмежених статтю
- •Типи нуклеінових кислот у вірусів.
- •Зчеплене успадкування ознак
- •Роль вірусів бактерій в природі та в біотехнологічних процесах.
- •Репарація днк: основні типи та відповідні молекулярні механізми.
- •Близнюків метод в генетиці людини
- •Ретровіруси як вектори горизонтальної передачі спадкової інформації.
- •Методи секвенування днк. Встановлення нуклеотидних послідовностей геномів.
- •Причини відхилень від менделівських розчеплень
- •Пріони як представники неканонічних вірусів.
- •Методи клонування днк та експресії білків у бактеріальних клітинах.
- •Організація геномів прокаріот
- •Ампліфікація днк за допомогою полімеразної ланцюгової реакції.
- •Поліморфізм та гетерозиготність популяцій
- •Створення функціональних бактеріальних плазмід in vitro.
Пріони як представники неканонічних вірусів.
Пріони- білкові інфекційні частки, що є неканонічними патогенами, які викликають трансмісивні губкоподібні енцефалопатії людини та тварин (раніше їх називали повільними вірусними інфекціями) в основі яких лежить конфірмаційні перетворення, що призводять до дизпротеїнозу . Пріонний білок PrP може бути в двух ізоформах: клітинній, нормальній - PrP(c), та зміненій, патологічній – PrP(sc).
В неінфекцйній формі ці білки входять до складу мієлінових оболонок клітин ЦНС, в їх молекулах переважають альфа-спіралі. Ця форма розчинна у воді. В інфекційній конформації основною складовою білка є бета-спіралі. Такі білки утворюють нерозчинні фібрили. Якщо такий білок потрапляє в організм він викликає зміни конформації нормального білка. Утворюються довгі фібрили, які руйнують нервові клітини і призводять до розвитку губчастих енцефалопатій. Створено кілька теорій, які б пояснювали, як патологічний білок впливає на нормальний. Згідно «гетеродимерної» моделі перетворення відбувається, коли молекула клітинного білка зв’язується з пріонним мономером майбутньої фібрили. Після того як білок набув пріонної конформації, ця пара може дисоціювати та ініціювати конформаційні перетворення інших білків. Агрегація перетворених молекулу фібрили розглядається як вторинне явище. [1,2]
БІЛЕТ 2
Методи клонування днк та експресії білків у бактеріальних клітинах.
Ефективним підходом, що дозволяє розмножити будь-який конкретний фрагмент ДНК, є техніка клонування цієї ДНК у бактеріальних клітинах: фрагмент, що цікавить, вбудовується у ДНК-вектор з утворенням рекомбінантної молекули ДНК, яка вводиться у клітину (так звана трансформація). Далі залишається зачекати зростання бактеріальної культури - бактерія використовується як своєрідний біореактор.
Як вектор часто використовують бактеріальні плазміди – порівняно невеликі циркулярні молекули ДНК, що існують у клітині незалежно від бактеріальної хромосоми. Основними вимогами до плазміди як вектора є наявність у її складі ориджина реплікації, унікального
(одного на плазміду) сайта, що впізнається певною рестриктазою, і гена стійкості до одного з антибіотиків.
Рестриктази - специфічні до невеликих елементів послідовності ендонуклеази, що здійснюють розрізання обох ланцюгів ДНК. Сайтом рестрикції, що впізнається рестриктазою, є невеликі (чотири, шість, іноді трохи більше пар основ) паліндромні послідовності. Залежно від типу рестриктази, два розрізи, які вона здійснює, можуть бути розташованими точно один напроти одного у двох ланцюгах, що приводить до утворення так званих тупих (blunt) кінців. Частіше рестриктази залишають взаємно комплементарні 5'-кінцеві (а іноді 3'-кінцеві) одноланцюгові
вирости - липкі (sticky) кінці. Із метою створення рекомбінантної ДНК очищену плазміду, яка
містить єдиний сайт певної рестриктази, обробляють цією рестриктазою і отримують лінійний вектор з липкими кінцями.
Далі додають фрагмент ДНК, який було вилучено за допомогою тієї самої рестриктази. За рахунок комплементарної взаємодії між липкими кінцями фрагмента й вектора утворюється циркулярний нековалентний комплекс двох молекул ДНК. Завдяки використанню іншого ключового ферменту рекомбінантної технології - ДНК-лігази - полінуклеотидні ланцюги зшиваються. Найзручнішими є плазмідні вектори, які містять так званий полілінкер - ділянку з певним набором унікальних рестриктних сайтів, що дозволяє підібрати одну з рестриктаз, найпридатнішу для кожного випадку. Фрагменти ДНК із тупими кінцями також можна вбудувати у вектор за допомогою лігази, хоча така реакція є на порядок менш ефективною. За допомогою термінальної нуклеотидилтрансферази (фермент, який без участі матриці приєднує нуклеотиди до 3'-кінця) до 3'-кінців фрагмента ДНК можна приєднати, наприклад, одноланцюговий poly(dA)-хвіст, а до 3'-кінців лінійного вектора - poly(dT). При змішуванні між комплементарними одноланцюговими кінцями відбудеться спарювання, остаточне зшивання завершує ДНК-лігаза. Можна також утворити тупі кінці на фрагментах із липкими кінцями.
Для цього або здійснюють видалення одноланцюгових виростів за допомогою нуклеази S1 (нуклеаза, що гідролізує тільки одно ланцюгову ДНК), або липкі кінці забудовують за допомогою фрагмента Кленова ДНК-полімерази І E. coli. Утворений фрагмент із тупими
кінцями вбудовують у вектор за щойно описаною процедурою.
Трансформація бактеріальних клітин рекомбінантною плазмі дою здійснюється зазвичай у розчині CaCl 2 або шляхом електропорації (через суспензію клітин проводиться короткий імпульс електричного струму). В обох випадках підвищується проникність клітинної стінки, і рекомбінантна плазміда потрапляє всередину. Зрозуміло, що далеко не всі бактерії отримують плазміду при трансформації. І тут стає в нагоді ген стійкості до антибіотика: достатньо обробити бактеріальну культуру цим антибіотиком, щоб залишити тільки трансформовані клітини. Далі відбувається автономна реплікація плазміди та розмноження самих клітин, що призводить до значного зростання загальної кількості плазмід. Клоновані плазміди виділяють із бактеріальної культури, а обробка їх тією самою рестриктазою, що була використана при виготовленні рекомбінантної молекули, дозволяє вирізати з вектора клонований фрагмент ДНК. Трансформація бактерій плазмідами є тим ефективнішою, чим меншою за розміром є плазміда. Відповідно, існує обмеження в розмірі фрагментів, що їх можна клонувати описаним шляхом до 10 тис. пар основ.
Альтернативною, але цілком аналогічною технікою, що дозволяє працювати з фрагментами довжиною ~20 тис. пар основ, є клонування ДНК із використання векторів на основі бактеріофага λ . За допомогою рестриктази фрагмент ДНК вбудовується у фагову ДНК, додаються порожні фагові оболонки, і здійснюється збирання фагових частинок in vitro. Рекомбінантними бактеріофагами заражають бактеріальну культуру, де відбувається їхнє розмноження.
Використовуючи вектори на основі космід, можна клонувати фрагменти ДНК до 40 тис. пар основ. Косміда є плазмідою, яка крім ориджину, сайтів рестрикції та генів стійкості до антибіотиків містить два cos-сайти: липкі кінці лінійної молекули ДНК бактеріофага λ. Саме за рахунок cos-сайтів лінійна молекула фагової ДНК циркуляризується після її проникнення в бактеріальну клітину. У лінійну косміду з такими липкими кінцями вбудовується фрагмент ДНК, який бажано клонувати. Рекомбінантна косміда упаковується in vitro у фагові частинки, якими обробляють бактеріальну культуру. У цьому випадку бактеріофаг використовується як ефективний засіб трансформації: лінійна косміда проникає у клітину, де циркуляризується за рахунок cos-сайтів і бактеріальної лігази. Далі циркулярна косміда розмножується як звичайна плазміда.
Для клонування фрагментів ДНК від 100 тис. пар основ використовують спеціально сконструйовані вектори ВАС (Bacterial Artificial Chromosome) і YAC (Yeast Artificial Chromosome). BAC-вектори створено на основі F-плазмід бактерій, YAC-вектор являє собою штучну дріжджову мініхромосому, яка містить центромеру, теломери й точку початку реплікації. У такий вектор можна ввести чужорідний фрагмент ДНК розміром понад 100 тис. пар основ. Така мініхромосома, уведена в дріжджову клітину, буде реплікуватися й поводити себе
аналогічно іншим дріжджовим хромосомам при мітотичному поділі. Більшість сучасних векторних систем є поліфункціональними - придатними не тільки для клонування ДНК, а й для експресії рекомбінантних білків, про що йтиметься нижче.