
- •Ознаки, зчеплені зі статтю.
- •Вторинна структура білків: типи, механізми стабілізації та роль регулярної вторинної структури в утворенні просторової структури глобулярних білків.
- •Природна і експериментальна поліплоїдія. Типи поліплоідів.
- •Характеристика популяції як елементарної одиниці еволюції.
- •Нековалентні міжмолекулярні взаємодії: типи, механізми виникнення та роль у підтриманні просторової структури біологічних макромолекул.
- •Множинний алелізм. Серії множинних алелей і механізм їх виникнення.
- •Боротьба за існування як елементарний фактор еволюції.
- •Фізична природа та біологічна роль водневого зв’язку та гідрофобних взаємодій.
- •Структурна організація і класифікація хромосом
- •Ізоляція як фактор еволюції.
- •Просторова структура глобулярних водорозчинних білків і основні механізми її стабілізації.
- •Балансова теорія визначення статі Бріджеса.
- •Природний добір як провідний фактор еволюції. Форми добору.
- •Принципи ферментативного каталізу.
- •Рівновага в популяції, закон Харді-Вайнберга
- •Біологічний прогрес і біологічний регрес.
- •Принципи використання вільної енергії гідролізу нуклеозидтрифосфатів для здійснення енергетично невигідних молекулярних процесів у біологічних системах.
- •Фактори динаміки популяцій та еволюція.
- •Основні етапи антропогенезу
- •Приклади молекулярних машин та загальні принципи їх функціонування.
- •Мейоз, основні фази, генетичне значення. Поведінка хромосом при мейозі як основа явища розщеплення і рекомбінації хромосом
- •Механізми м’язового скорочення
- •Хімічні компоненти нуклеїнових кислот, їх властивості та класифікація. Будова полінуклеотидного ланцюга.
- •Спадкування кількісних ознак. Полімерні гени.
- •Механізми передачі нервового імпульсу по аксону
- •Структура подвійних спіралей нуклеїнових кислот та механізми її стабілізації. Структурні форми подвійних спіралей.
- •Поняття про мутації, характерні риси спонтанного мутаційного процесу.
- •Плани будови прокаріотичної та еукаріотичної клітини
- •Рівні структурної організації хроматину еукаріотів. Структура нуклеосоми та хроматинової фібрили.
- •Регуляція активності генів у прокаріотів. Структура оперона.
- •Теорії походження еукаріотичної клітини
- •Принципи організації геномів про- та еукаріотів.
- •Закони спадкової передачі ознак, відкриті г.Менделем.
- •Будова, властивості та функції біологічних мембран.
- •Мобільні елементи в геномах: типи та молекулярні механізми переміщення.
- •Хромосомні типи визначення статі.
- •Ультраструктурна організація мітохондрій
- •Ініціація транскрипції в еукаріотів. Базальні транскрипційні фактори та збірка преініціаторного комплексу рнк-полімерази іі.
- •Порівняльна характеристика мутаційної та модифікаційної мінливості.
- •Поняття про цитоскелет та його структурні елементи
- •Структура і властивості генетичного коду.
- •Клітинний цикл та його регуляція
- •Транскрипційні фактори та базові механізми їх участі в регуляції транскрипції в еукаріотів.
- •Генеалогічний метод в генетиці людини. Складання родоводів.
- •Мітоз, його біологічне значення. Фази мітозу.
- •Мікро-рнк та їх участь в регуляції експресії генетичної інформації. Рнк-інтерференція.
- •Типи взаємодій між алелями одного гену.
- •Статевий процес та його біологічне значення.
- •Типи взаємодій неалельних генів.
- •Яйцеклітина, її хімічний склад, будова та різноманітність типів живлення.
- •Процессинг мРнк: етапи, синхронізація із транскрипцією, біологічна роль.
- •Гамети та їх утворення.
- •Структура й біологічна роль тРнк.
- •Організація геномів еукаріот.
- •Запліднення та його біологічне значення; особливості зовнішнього та внутрішнього запліднення.
- •Аміноацил-тРнк-синтетази, їх функція та реакції, які вони каталізують.
- •Соціальні аспекти генетики людини. Сутність евгеніки.
- •Елонгаційний цикл білкового синтезу. Молекулярні механізми зв’язування аміноацил-тРнк, транспептидації та транслокації.
- •Плейотропна дія генів, приклади.
- •Дроблення та його біологічне значення; особливості поділу клітин в період дроблення.
- •Ініціація трансляції у про- та еукаріотів.
- •Кросинговер, інтерференція, коінциденція.
- •Стадія бластули. Типи бластул
- •Склад та структура рибосоми. Взаємодія рибосоми з мРнк та тРнк. Функціональна роль рибосомних субодиниць.
- •Типи визначення статі
- •Стадія гаструли. Типи гаструляційних переміщень (інвагінація, епіболія, імміграція, делямінація).
- •Основні компоненти реплісоми та їх функціональна роль.
- •Спадкування ознак залежних від статі та обмежених статтю
- •Типи нуклеінових кислот у вірусів.
- •Зчеплене успадкування ознак
- •Роль вірусів бактерій в природі та в біотехнологічних процесах.
- •Репарація днк: основні типи та відповідні молекулярні механізми.
- •Близнюків метод в генетиці людини
- •Ретровіруси як вектори горизонтальної передачі спадкової інформації.
- •Методи секвенування днк. Встановлення нуклеотидних послідовностей геномів.
- •Причини відхилень від менделівських розчеплень
- •Пріони як представники неканонічних вірусів.
- •Методи клонування днк та експресії білків у бактеріальних клітинах.
- •Організація геномів прокаріот
- •Ампліфікація днк за допомогою полімеразної ланцюгової реакції.
- •Поліморфізм та гетерозиготність популяцій
- •Створення функціональних бактеріальних плазмід in vitro.
Структура й біологічна роль тРнк.
Молекули тРНК містять 74-95 (найчастіше 76) нуклеотидів, серед яких зустрічаються неканонічні (утворюються внаслідок посттранскрипційних модифікацій) - тимідин, інозин (І), дигідроуридин (D), псевдоуридин (ψ) тощо. У складі молекули формуються комплементарні дволанцюгові стебла та шпильки за єдиною для всіх тРНК схемою, що нагадує лист конюшини. Кінцеві фрагменти ланцюга об'єднуються у дволанцюгове стебло, причому чотири нуклеотиди на 3'-кінці залишаються неспареними. 3'-Кінцевий триплет ССА є стандартним для всіх тРНК, до рибози кінцевого аденозину ковалентно приєднується амінокислота: відповідно, стебло називають акцепторним. 5'-Кінцева частина акцепторного стебла переходить у шпильку з петлею, яка часто містить дигідроуридин - D-стебло і D-петля. У деяких тРНК D-петля може містити на один нуклеотид менше або на один-три нуклеотиди більше відносно типового розміру петлі. D-стебло переходить у стебло з петлею, у складі якої розташований антикодоновий триплет (у позиції 34-36), - антикодонове стебло / антикодонова петля. За антикодоновим стеблом розташована варіабельна петля (V-петля). За розміром V-петлі всі тРНК можна поділити на два структурні класи: до першого належить більшість тРНК із короткою петлею (3-5 нуклеотидів), до другого - кілька тРНК із довгою (до 16 додаткових нуклеотидів) петлею. Нумерація нуклеотидів, додаткові нуклеотиди D- та V-петлі, якщо вони присутні, нумерують окремо. За варіабельною петлею міститься ТψС-стебло з петлею (у складі петлі часто зустрічається консенсус ТψС), яке переходить у 3'-кінцеву частину акцепторного стебла. тРНК конкретного типу, котра відповідає певній амінокислоті, позначають індексом, наприклад, тРНК Ala . Якщо в молекулі тРНК є амінокислота, то таку аміноацильовану тРНК позначають як Ala-тРНК Ala . Загальне позначення для аміноацильованих тРНК - аа-тРНК (aa-tRNA - aminoacyl-tRNA). Еукаріотичні гени тРНК (близько 500 активних генів тРНК у геномі людини, частина яких зібрана в кластери) транскрибуються РНК-полімеразою ІІІ. Продуктом транскрипції генів є довші молекули-попередники, деякі містять інтрон у межах майбутньої антикодонової петлі. Процесинг цих попередників з утворенням зрілих тРНК полягає у відщепленні певними нуклеазами зайвих фрагментів на кінцях, сплайсингу інтрона (здійснюється специфічними ендонуклеазами та
лігазою), приєднанні до 3'-кінця стандартного триплету ССА (у складі прокаріотичних тРНК-попередників цей триплет уже присутній), хімічній модифікації певних азотистих основ. Прокаріотичні гени тРНК (87 у геномі E. coli, не містять інтронів) або транскрибуються
окремо (як у еукаріотів), або є частинами оперонів, і в цьому випадку первинний транскрипт містить кілька майбутніх молекул тРНК. Крім того, деякі прокаріотичні гени тРНК знаходяться у складі оперона генів рибосомної РНК. В усіх випадках тРНК вирізаються з попередників нуклеазами, після чого піддаються хімічним модифікаціям. Одна з нуклеаз, котра бере участь у процесингу тРНК у про- та еукаріотів, - РНКаза Р - варта особливої уваги. Фермент складається з двох субодиниць, одна з яких є білковою, а друга - молекулою РНК зі складною просторовою структурою. Саме ця РНК-субодиниця має каталітичну активність, тобто РНКаза Р - рибозим. Схема «лист конюшини» не дає уяви щодо просторової структури тРНК. Насправді акцепторне та ТψС-стебло, переходячи одне в одне, утворюють єдину майже пряму подвійну спіраль, під приблизно прямим кутом до якої розташована друга подвійна
спіраль, сформована D- і антикодоновим стеблом. ТψС- і D-петлі при цьому наближаються одна до одної, між ними реалізується комплементарне спарювання основ. У результаті молекула тРНК має Г-подібну (або L-подібну) форму з двома плечами різної довжини: на кінці одного плеча акцептується амінокислота (акцепторне плече), на кінці іншого розташований антикодон (антикодонове плече). У складі дволанцюгових спіральних зон тРНК міститься ~55 % нуклеотидів, але ~90 % основ залучено до стекінг-взаємодій. Отже, молекула характеризується високою впорядкованістю, жорсткістю своєї структури. Це стосується також і петель, серед яких лише антикодонова петля не залучена до взаємодій з іншими елементами. Але п'ять основ петлі (включаючи антикодон) утворюють досить жорстку стопку. Додатково структура тРНК стабілізується іонами Mg 2+ , тільки у присутності яких молекула є функціонально активною.
Загальна кількість типів тРНК, які обслуговують процес білкового синтезу, є близькою до 40 (наприклад, усі гени тРНК людини можна поділити на 49 родин за властивостями антикодонів). Оскільки типів тРНК більше, ніж амінокислот, одній амінокислоті може відповідати кілька тРНК - такі тРНК називають ізоакцепторними. Серед них є такі, що містять різні (але, звичайно, синонімічні) антикодони, - гетерокодонові. Є також гомокодонові тРНК, які можуть бути продук-
тами різних генів (розрізняються за послідовністю нуклеотидів), а можуть бути продуктами одного гена, розрізняючись модифікаціями основ. Оскільки типів тРНК менше, ніж кодонів, одна тРНК здатна впізнавати кілька синонімічних кодонів, що забезпечується неоднозначністю спарювання між першою позицією антикодона і третьою (за якою, головним чином, розрізняються синонімічні кодони) - кодона. А саме, U і G здатні впізнавати по два нуклеотиди у третій позиції кодона, I (який досить часто зустрічається в першій позиції антикодона) упізнає три нуклеотиди.