
- •Ознаки, зчеплені зі статтю.
- •Вторинна структура білків: типи, механізми стабілізації та роль регулярної вторинної структури в утворенні просторової структури глобулярних білків.
- •Природна і експериментальна поліплоїдія. Типи поліплоідів.
- •Характеристика популяції як елементарної одиниці еволюції.
- •Нековалентні міжмолекулярні взаємодії: типи, механізми виникнення та роль у підтриманні просторової структури біологічних макромолекул.
- •Множинний алелізм. Серії множинних алелей і механізм їх виникнення.
- •Боротьба за існування як елементарний фактор еволюції.
- •Фізична природа та біологічна роль водневого зв’язку та гідрофобних взаємодій.
- •Структурна організація і класифікація хромосом
- •Ізоляція як фактор еволюції.
- •Просторова структура глобулярних водорозчинних білків і основні механізми її стабілізації.
- •Балансова теорія визначення статі Бріджеса.
- •Природний добір як провідний фактор еволюції. Форми добору.
- •Принципи ферментативного каталізу.
- •Рівновага в популяції, закон Харді-Вайнберга
- •Біологічний прогрес і біологічний регрес.
- •Принципи використання вільної енергії гідролізу нуклеозидтрифосфатів для здійснення енергетично невигідних молекулярних процесів у біологічних системах.
- •Фактори динаміки популяцій та еволюція.
- •Основні етапи антропогенезу
- •Приклади молекулярних машин та загальні принципи їх функціонування.
- •Мейоз, основні фази, генетичне значення. Поведінка хромосом при мейозі як основа явища розщеплення і рекомбінації хромосом
- •Механізми м’язового скорочення
- •Хімічні компоненти нуклеїнових кислот, їх властивості та класифікація. Будова полінуклеотидного ланцюга.
- •Спадкування кількісних ознак. Полімерні гени.
- •Механізми передачі нервового імпульсу по аксону
- •Структура подвійних спіралей нуклеїнових кислот та механізми її стабілізації. Структурні форми подвійних спіралей.
- •Поняття про мутації, характерні риси спонтанного мутаційного процесу.
- •Плани будови прокаріотичної та еукаріотичної клітини
- •Рівні структурної організації хроматину еукаріотів. Структура нуклеосоми та хроматинової фібрили.
- •Регуляція активності генів у прокаріотів. Структура оперона.
- •Теорії походження еукаріотичної клітини
- •Принципи організації геномів про- та еукаріотів.
- •Закони спадкової передачі ознак, відкриті г.Менделем.
- •Будова, властивості та функції біологічних мембран.
- •Мобільні елементи в геномах: типи та молекулярні механізми переміщення.
- •Хромосомні типи визначення статі.
- •Ультраструктурна організація мітохондрій
- •Ініціація транскрипції в еукаріотів. Базальні транскрипційні фактори та збірка преініціаторного комплексу рнк-полімерази іі.
- •Порівняльна характеристика мутаційної та модифікаційної мінливості.
- •Поняття про цитоскелет та його структурні елементи
- •Структура і властивості генетичного коду.
- •Клітинний цикл та його регуляція
- •Транскрипційні фактори та базові механізми їх участі в регуляції транскрипції в еукаріотів.
- •Генеалогічний метод в генетиці людини. Складання родоводів.
- •Мітоз, його біологічне значення. Фази мітозу.
- •Мікро-рнк та їх участь в регуляції експресії генетичної інформації. Рнк-інтерференція.
- •Типи взаємодій між алелями одного гену.
- •Статевий процес та його біологічне значення.
- •Типи взаємодій неалельних генів.
- •Яйцеклітина, її хімічний склад, будова та різноманітність типів живлення.
- •Процессинг мРнк: етапи, синхронізація із транскрипцією, біологічна роль.
- •Гамети та їх утворення.
- •Структура й біологічна роль тРнк.
- •Організація геномів еукаріот.
- •Запліднення та його біологічне значення; особливості зовнішнього та внутрішнього запліднення.
- •Аміноацил-тРнк-синтетази, їх функція та реакції, які вони каталізують.
- •Соціальні аспекти генетики людини. Сутність евгеніки.
- •Елонгаційний цикл білкового синтезу. Молекулярні механізми зв’язування аміноацил-тРнк, транспептидації та транслокації.
- •Плейотропна дія генів, приклади.
- •Дроблення та його біологічне значення; особливості поділу клітин в період дроблення.
- •Ініціація трансляції у про- та еукаріотів.
- •Кросинговер, інтерференція, коінциденція.
- •Стадія бластули. Типи бластул
- •Склад та структура рибосоми. Взаємодія рибосоми з мРнк та тРнк. Функціональна роль рибосомних субодиниць.
- •Типи визначення статі
- •Стадія гаструли. Типи гаструляційних переміщень (інвагінація, епіболія, імміграція, делямінація).
- •Основні компоненти реплісоми та їх функціональна роль.
- •Спадкування ознак залежних від статі та обмежених статтю
- •Типи нуклеінових кислот у вірусів.
- •Зчеплене успадкування ознак
- •Роль вірусів бактерій в природі та в біотехнологічних процесах.
- •Репарація днк: основні типи та відповідні молекулярні механізми.
- •Близнюків метод в генетиці людини
- •Ретровіруси як вектори горизонтальної передачі спадкової інформації.
- •Методи секвенування днк. Встановлення нуклеотидних послідовностей геномів.
- •Причини відхилень від менделівських розчеплень
- •Пріони як представники неканонічних вірусів.
- •Методи клонування днк та експресії білків у бактеріальних клітинах.
- •Організація геномів прокаріот
- •Ампліфікація днк за допомогою полімеразної ланцюгової реакції.
- •Поліморфізм та гетерозиготність популяцій
- •Створення функціональних бактеріальних плазмід in vitro.
Мікро-рнк та їх участь в регуляції експресії генетичної інформації. Рнк-інтерференція.
Гетерохроматин утворюється в першу чергу на послідовностях ДНК, що повторюються. Причому має значення не послідовність як така, а саме наявність повторів. Виявляється, що у формуванні та підтриманні гетерохроматинового стану повторів (принаймні у центромерах) важливу роль відіграє процес так званої РНК-інтерференції (RNAi – RNA interference).
Взагалі процес РНК-інтерференції запускається будь-якою дволанцюговою РНК (dsRNA – double stranded RNA). Дволанцюгова РНК стає субстратом для РНКази, яка отримала назву Dicer (рис. 6.28): Dicer розрізає молекулу на дволанцюгові фрагменти довжиною 19-21 пари основ (по 2 нуклеотиди залишаються неспареними на кінцях). Ці фрагменти, які позначають як siRNA (short interfering RNA), можуть бути ампліфіковані РНК-залежною РНК-полімеразою (RdRP – RNA depended RNA Polymerase). Вони зв'язуються з кількома білками, утворюючи комплекс RISC (RNA Induced Silencing Complex). Один з білків має РНК-геліказну активність і розводить 2 ланцюги siRNA. Один з ланцюгів здійснює комплементарне спарювання з ділянкою мРНК, що синтезується у процесі транскрипції (звичайно, вихідна dsRNA має співпадати за послідовністю з кодуючою частиною даного гена), спрямовуючи туди RISC. Один з компонентів комплексу – РНК-аза Slicer – здійснює деградацію транскрипту. Крім того, RISC може індукувати активність RdRP для синтезу комплементарного ланцюга РНК на мРНК (чи її частині) у якості матриці. Відновлена дволанцюгова РНК буде знов підтримувати інактивацію гена шляхом інтерференції. Отже, хоча транскрипція відбувається, реалізується посттранскрипційне вимкнення гена (PTGS – posttranscriptional gene silencing).
РНК-інтерференція широко використовується останнім часом як дослідницький інструмент (за схемою на рис. 6.28): достатньо ввести в клітину синтетичну дволанцюгову РНК, послідовність якої ідентична послідовності певного гена, щоб запустити процес інтерференції, вимкнути ген і, таким чином, з'ясувати його функцію.
У клітині РНК-інтерференція є однією з систем негативної регуляції експресії генів через використання так званих мікроРНК (miRNA). Активація генів мікроРНК (200-300 генів у геномі людини, які транскрибуються РНК-полімеразою ІІ) призводить до синтезу молекул РНК, що містять дволанцюгові шпильки. Ці шпильки (довжиною 25-35 пар основ) вирізаються нуклеазою і стають субстратом для Dicer. Результуюча дволанцюгова мікроРНК є аналогом siRNA: один з її ланцюгів є комплементарним до ділянки мРНК певного білкового гена, молекула мікроРНК зв'язується з білками RISC і спрямовує їх до мРНК-мішені. Результатом взаємодії з мРНК може бути її посттранскрипційна деградація (більш характерно для рослин), зупинка білкового синтезу (більш характерно для тварин – у цьому випадку взаємодія з мРНК відбувається у цитоплазмі), а також рекрутування до хроматину гістон-метилтрансфераз із наступною репресією даного гена. Дещо подібне відбувається і у гетерохроматині.
Участь РНК-інтерференції у підтриманні герехроматинового стану центромер ілюструє рис. 6.29. При порушенні компактизації на центромерних повторах може відбуватися спонтанна транскрипція у різних напрямах. Оскільки матрицею є повтори, існує висока ймовірність синтезу комплементарних молекул РНК: утвориться дволанцюгова РНК, яка запустить процес інтерференції. Крім деградації транскриптів, інтерференція має інший наслідок: RISC, який опиняється в зоні повторів, рекрутує до хроматину гістон-метилтрансферазу, що здійснює метилювання Lys9 гістона Н3. За вже відомою схемою (рис. 6.25, 6.26) відбувається зв'язування НР1 та компактизація гетерохроматину