
- •Ознаки, зчеплені зі статтю.
- •Вторинна структура білків: типи, механізми стабілізації та роль регулярної вторинної структури в утворенні просторової структури глобулярних білків.
- •Природна і експериментальна поліплоїдія. Типи поліплоідів.
- •Характеристика популяції як елементарної одиниці еволюції.
- •Нековалентні міжмолекулярні взаємодії: типи, механізми виникнення та роль у підтриманні просторової структури біологічних макромолекул.
- •Множинний алелізм. Серії множинних алелей і механізм їх виникнення.
- •Боротьба за існування як елементарний фактор еволюції.
- •Фізична природа та біологічна роль водневого зв’язку та гідрофобних взаємодій.
- •Структурна організація і класифікація хромосом
- •Ізоляція як фактор еволюції.
- •Просторова структура глобулярних водорозчинних білків і основні механізми її стабілізації.
- •Балансова теорія визначення статі Бріджеса.
- •Природний добір як провідний фактор еволюції. Форми добору.
- •Принципи ферментативного каталізу.
- •Рівновага в популяції, закон Харді-Вайнберга
- •Біологічний прогрес і біологічний регрес.
- •Принципи використання вільної енергії гідролізу нуклеозидтрифосфатів для здійснення енергетично невигідних молекулярних процесів у біологічних системах.
- •Фактори динаміки популяцій та еволюція.
- •Основні етапи антропогенезу
- •Приклади молекулярних машин та загальні принципи їх функціонування.
- •Мейоз, основні фази, генетичне значення. Поведінка хромосом при мейозі як основа явища розщеплення і рекомбінації хромосом
- •Механізми м’язового скорочення
- •Хімічні компоненти нуклеїнових кислот, їх властивості та класифікація. Будова полінуклеотидного ланцюга.
- •Спадкування кількісних ознак. Полімерні гени.
- •Механізми передачі нервового імпульсу по аксону
- •Структура подвійних спіралей нуклеїнових кислот та механізми її стабілізації. Структурні форми подвійних спіралей.
- •Поняття про мутації, характерні риси спонтанного мутаційного процесу.
- •Плани будови прокаріотичної та еукаріотичної клітини
- •Рівні структурної організації хроматину еукаріотів. Структура нуклеосоми та хроматинової фібрили.
- •Регуляція активності генів у прокаріотів. Структура оперона.
- •Теорії походження еукаріотичної клітини
- •Принципи організації геномів про- та еукаріотів.
- •Закони спадкової передачі ознак, відкриті г.Менделем.
- •Будова, властивості та функції біологічних мембран.
- •Мобільні елементи в геномах: типи та молекулярні механізми переміщення.
- •Хромосомні типи визначення статі.
- •Ультраструктурна організація мітохондрій
- •Ініціація транскрипції в еукаріотів. Базальні транскрипційні фактори та збірка преініціаторного комплексу рнк-полімерази іі.
- •Порівняльна характеристика мутаційної та модифікаційної мінливості.
- •Поняття про цитоскелет та його структурні елементи
- •Структура і властивості генетичного коду.
- •Клітинний цикл та його регуляція
- •Транскрипційні фактори та базові механізми їх участі в регуляції транскрипції в еукаріотів.
- •Генеалогічний метод в генетиці людини. Складання родоводів.
- •Мітоз, його біологічне значення. Фази мітозу.
- •Мікро-рнк та їх участь в регуляції експресії генетичної інформації. Рнк-інтерференція.
- •Типи взаємодій між алелями одного гену.
- •Статевий процес та його біологічне значення.
- •Типи взаємодій неалельних генів.
- •Яйцеклітина, її хімічний склад, будова та різноманітність типів живлення.
- •Процессинг мРнк: етапи, синхронізація із транскрипцією, біологічна роль.
- •Гамети та їх утворення.
- •Структура й біологічна роль тРнк.
- •Організація геномів еукаріот.
- •Запліднення та його біологічне значення; особливості зовнішнього та внутрішнього запліднення.
- •Аміноацил-тРнк-синтетази, їх функція та реакції, які вони каталізують.
- •Соціальні аспекти генетики людини. Сутність евгеніки.
- •Елонгаційний цикл білкового синтезу. Молекулярні механізми зв’язування аміноацил-тРнк, транспептидації та транслокації.
- •Плейотропна дія генів, приклади.
- •Дроблення та його біологічне значення; особливості поділу клітин в період дроблення.
- •Ініціація трансляції у про- та еукаріотів.
- •Кросинговер, інтерференція, коінциденція.
- •Стадія бластули. Типи бластул
- •Склад та структура рибосоми. Взаємодія рибосоми з мРнк та тРнк. Функціональна роль рибосомних субодиниць.
- •Типи визначення статі
- •Стадія гаструли. Типи гаструляційних переміщень (інвагінація, епіболія, імміграція, делямінація).
- •Основні компоненти реплісоми та їх функціональна роль.
- •Спадкування ознак залежних від статі та обмежених статтю
- •Типи нуклеінових кислот у вірусів.
- •Зчеплене успадкування ознак
- •Роль вірусів бактерій в природі та в біотехнологічних процесах.
- •Репарація днк: основні типи та відповідні молекулярні механізми.
- •Близнюків метод в генетиці людини
- •Ретровіруси як вектори горизонтальної передачі спадкової інформації.
- •Методи секвенування днк. Встановлення нуклеотидних послідовностей геномів.
- •Причини відхилень від менделівських розчеплень
- •Пріони як представники неканонічних вірусів.
- •Методи клонування днк та експресії білків у бактеріальних клітинах.
- •Організація геномів прокаріот
- •Ампліфікація днк за допомогою полімеразної ланцюгової реакції.
- •Поліморфізм та гетерозиготність популяцій
- •Створення функціональних бактеріальних плазмід in vitro.
Плани будови прокаріотичної та еукаріотичної клітини
БІЛЕТ 20
Рівні структурної організації хроматину еукаріотів. Структура нуклеосоми та хроматинової фібрили.
ДНК існує в клітинному ядрі у вигляді складного нуклеопротеїнового комплексу - хроматину.
На першому рівні організації хроматину ДНК формує за рахунок взаємодії з білками елементарні утворення - нуклеосоми - із середньою щільністю одна нуклеосома на 200 пар основ. Білковий компонент нуклеосоми (кор) складається з восьми молекул корових гістонів Н2А, Н2В, Н3 і Н4 - по дві молекули кожного типу. На другому рівні компактизації за участю лінкерних гістонів Н1 утворюється фібрила товщиною 30 нм. Хроматинова фібрила формує петлі розміром 20-200 тис. пар основ, кінці яких є жорстко закріпленими на скелетних структурах ядерного матриксу.
Регуляція активності генів у прокаріотів. Структура оперона.
Зрозуміло, що гени та оперони (див. розділ 4) не транскрибуються постійно, а вмикаються/вимикаються в певні моменти залежно від зовнішніх умов, стадій клітинного циклу тощо. Головними елементами, взаємодія між якими приводить до активації чи репресії транскрипції, є так звані цис- і транс-елементи. Цис-елементи - це регуляторні елементи послідовності ДНК, які фізично зв'язані з даним геном чи опероном; у прокаріотів часто називаються операторами і розташовані в безпосередній близькості до промоторів. Транселементи - білкові фактори транскрипції, що вільно дифундують (транспортуються) у просторі клітини, шукаючи свій цис-елемент, з яким вони мають специфічну спорідненість. Якщо зв'язування транс-елемента з оператором приводить до активації транскрипції (часто за рахунок прямих білок-білкових взаємодій транскрипційного фактора з РНК-полімеразою, які підвищують її спорідненість до промотора), кажуть, що фактор є активатором і здійснює позитивну регуляцію. Якщо фактор блокує зв'язування РНК-полімерази (часто за рахунок зниження доступності промотора), його називають репресором і кажуть про негативну регуляцію.
Оперон являє собою кластер так званих структурних генів, на яких синтезується одна молекула мРНК, що має кілька (на кожен структурний ген) послідовних (які не перекриваються) відкритих рамок зчитування для трансляції відповідних білків. У межах оперона згруповані структурні гени, які відповідають за синтез білків, залучених до одного ланцюжка біохімічних перетворень (ферменти синтезу або деградації певної сполуки). Крім структурних генів оперон має регуляторні ділянки, за рахунок яких здійснюється регуляція транскрипції оперона як цілого. У геномі E. coli міститься ~650 таких одиниць транскрипції.
Лактозний оперон
До складу оперона входять три структурні гени, що кодують ферменти, залучені до утилізації (катаболізму) лактози. Транскрипція всіх трьох генів здійснюється з одного промотора (синтезується єдина, так звана поліцистронна, молекула мРНК, яка має три послідовні відкриті рамки зчитування). Промотор оточують дві однакові операторні ділянки (lac-оператори), що мають спорідненість до lac-репресора, і сайт зв'язування CAP (Catabolite Activator Protein). Промотор lac-оперона є слабким - має досить низьку власну спорідненість до РНК-полімерази. Навіть якщо в середовищі є лактоза, але присутня також глюкоза (кращий харчовий субстрат для бактерій), транскрипція lac-оперона майже не здійснюється. Зниження рівня глюкози приводить до підвищення внутрішньоклітинної концентрації сАМР (циклічного аденозинмонофосфату), зв'язування якого з САР індукує конформаційну перебудову білка та появу його специфічної спорідненості до відповідного сайта на ДНК. Взаємодія САР із РНК-полімеразою підсилює її спорідненість до промотора - САР рекрутує полімеразу, яка далі розпочинає синтез мРНК. Описаний сценарій позитивної регуляції реалізується лише за тієї умови, що lac-оператори не взаємодіють з lac-репресором. У разі відсутності лактози (коли відповідні ферменти її утилізації напевно не потрібні) гомодимери репресора (незалежно від можливої присутності САР) зв'язуються з обома операторами при цьому взаємодіють між собою: утворюється тетрамерний комплекс, що утримує петлю ДНК. Усередині петлі розташований промотор, і це абсолютно запобігає зв'язуванню з ним РНК-полімерази. Коли з'являється лактоза, її невелика кількість перетворюється на алолактозу, яка спрацьовує як індуктор lac-оперона: зв'язування алолактози з репресором індукує втрату його спорідненості до оператора. Унаслідок руйнування петлі РНК-полімераза зв'язується з промотором і оперон починає працювати.