
- •Ознаки, зчеплені зі статтю.
- •Вторинна структура білків: типи, механізми стабілізації та роль регулярної вторинної структури в утворенні просторової структури глобулярних білків.
- •Природна і експериментальна поліплоїдія. Типи поліплоідів.
- •Характеристика популяції як елементарної одиниці еволюції.
- •Нековалентні міжмолекулярні взаємодії: типи, механізми виникнення та роль у підтриманні просторової структури біологічних макромолекул.
- •Множинний алелізм. Серії множинних алелей і механізм їх виникнення.
- •Боротьба за існування як елементарний фактор еволюції.
- •Фізична природа та біологічна роль водневого зв’язку та гідрофобних взаємодій.
- •Структурна організація і класифікація хромосом
- •Ізоляція як фактор еволюції.
- •Просторова структура глобулярних водорозчинних білків і основні механізми її стабілізації.
- •Балансова теорія визначення статі Бріджеса.
- •Природний добір як провідний фактор еволюції. Форми добору.
- •Принципи ферментативного каталізу.
- •Рівновага в популяції, закон Харді-Вайнберга
- •Біологічний прогрес і біологічний регрес.
- •Принципи використання вільної енергії гідролізу нуклеозидтрифосфатів для здійснення енергетично невигідних молекулярних процесів у біологічних системах.
- •Фактори динаміки популяцій та еволюція.
- •Основні етапи антропогенезу
- •Приклади молекулярних машин та загальні принципи їх функціонування.
- •Мейоз, основні фази, генетичне значення. Поведінка хромосом при мейозі як основа явища розщеплення і рекомбінації хромосом
- •Механізми м’язового скорочення
- •Хімічні компоненти нуклеїнових кислот, їх властивості та класифікація. Будова полінуклеотидного ланцюга.
- •Спадкування кількісних ознак. Полімерні гени.
- •Механізми передачі нервового імпульсу по аксону
- •Структура подвійних спіралей нуклеїнових кислот та механізми її стабілізації. Структурні форми подвійних спіралей.
- •Поняття про мутації, характерні риси спонтанного мутаційного процесу.
- •Плани будови прокаріотичної та еукаріотичної клітини
- •Рівні структурної організації хроматину еукаріотів. Структура нуклеосоми та хроматинової фібрили.
- •Регуляція активності генів у прокаріотів. Структура оперона.
- •Теорії походження еукаріотичної клітини
- •Принципи організації геномів про- та еукаріотів.
- •Закони спадкової передачі ознак, відкриті г.Менделем.
- •Будова, властивості та функції біологічних мембран.
- •Мобільні елементи в геномах: типи та молекулярні механізми переміщення.
- •Хромосомні типи визначення статі.
- •Ультраструктурна організація мітохондрій
- •Ініціація транскрипції в еукаріотів. Базальні транскрипційні фактори та збірка преініціаторного комплексу рнк-полімерази іі.
- •Порівняльна характеристика мутаційної та модифікаційної мінливості.
- •Поняття про цитоскелет та його структурні елементи
- •Структура і властивості генетичного коду.
- •Клітинний цикл та його регуляція
- •Транскрипційні фактори та базові механізми їх участі в регуляції транскрипції в еукаріотів.
- •Генеалогічний метод в генетиці людини. Складання родоводів.
- •Мітоз, його біологічне значення. Фази мітозу.
- •Мікро-рнк та їх участь в регуляції експресії генетичної інформації. Рнк-інтерференція.
- •Типи взаємодій між алелями одного гену.
- •Статевий процес та його біологічне значення.
- •Типи взаємодій неалельних генів.
- •Яйцеклітина, її хімічний склад, будова та різноманітність типів живлення.
- •Процессинг мРнк: етапи, синхронізація із транскрипцією, біологічна роль.
- •Гамети та їх утворення.
- •Структура й біологічна роль тРнк.
- •Організація геномів еукаріот.
- •Запліднення та його біологічне значення; особливості зовнішнього та внутрішнього запліднення.
- •Аміноацил-тРнк-синтетази, їх функція та реакції, які вони каталізують.
- •Соціальні аспекти генетики людини. Сутність евгеніки.
- •Елонгаційний цикл білкового синтезу. Молекулярні механізми зв’язування аміноацил-тРнк, транспептидації та транслокації.
- •Плейотропна дія генів, приклади.
- •Дроблення та його біологічне значення; особливості поділу клітин в період дроблення.
- •Ініціація трансляції у про- та еукаріотів.
- •Кросинговер, інтерференція, коінциденція.
- •Стадія бластули. Типи бластул
- •Склад та структура рибосоми. Взаємодія рибосоми з мРнк та тРнк. Функціональна роль рибосомних субодиниць.
- •Типи визначення статі
- •Стадія гаструли. Типи гаструляційних переміщень (інвагінація, епіболія, імміграція, делямінація).
- •Основні компоненти реплісоми та їх функціональна роль.
- •Спадкування ознак залежних від статі та обмежених статтю
- •Типи нуклеінових кислот у вірусів.
- •Зчеплене успадкування ознак
- •Роль вірусів бактерій в природі та в біотехнологічних процесах.
- •Репарація днк: основні типи та відповідні молекулярні механізми.
- •Близнюків метод в генетиці людини
- •Ретровіруси як вектори горизонтальної передачі спадкової інформації.
- •Методи секвенування днк. Встановлення нуклеотидних послідовностей геномів.
- •Причини відхилень від менделівських розчеплень
- •Пріони як представники неканонічних вірусів.
- •Методи клонування днк та експресії білків у бактеріальних клітинах.
- •Організація геномів прокаріот
- •Ампліфікація днк за допомогою полімеразної ланцюгової реакції.
- •Поліморфізм та гетерозиготність популяцій
- •Створення функціональних бактеріальних плазмід in vitro.
Принципи використання вільної енергії гідролізу нуклеозидтрифосфатів для здійснення енергетично невигідних молекулярних процесів у біологічних системах.
Джерелом енергії для всіх процесів, що її потребують, у живих системах є нуклеозидтрифосфати. Найчастіше використовується аденозинтрифосфат (adenosine triphosphate, ATP). Ця сполука, яка утворюється при перенесенні протонів через мембрану хлоропластів (фотосинтез) чи мітохондрій (окислювальне фосфорилювання),схематично показана на рис. 2.20.
Вона складається з азотистої основи (аденіну), пентозного цукру (рибози) та трьох залишків фосфорної кислоти. Гідроліз АТР приводить до відщеплення одного з них - залишається аденозиндифосфат (adenosine diphosphate, ADP) і неорганічний фосфат Р і . Звичайно, як будь-яка інша реакція, гідроліз АТР потребує каталізу (за участю досить широкого класу ферментів - АТРаз). Роль АТР як джерела енергії зумовлена тим, що ця реакція супроводжується досить великим зниженням вільної енергії. Зв'язок між фосфатними залишками, який руйнується при перетворенні АТР на ADP, іноді так і називають - макроергічним. Ця назва не має викликати помилкового уявлення, що цей зв'язок заощаджує надзвичайно велику енергію. По-перше, в цьому зв'язку немає нічого особливого. По-друге, загальна кількість ковалентних зв'язків не змінюється в ході реакції - фосфатний залишок переноситься на молекулу води. Змінюється тільки вільна енергія набору хімічних сполук. Причому головний внесок у цю зміну дають концентраційні (тобто ентропійні) ефекти, а не хімічні перебудови молекул.
Скориставшись рівнянням, різницю вільних енергій продуктів і субстратів реакції, зображеної на рис. 2.20, можна записати як
де у квадратних дужках - молярні концентрації відповідних компонентів, ∆G* - стандартна зміна вільної енергії, RT = 0,6 ккал/моль. Оцінки показують, що величина ∆G* = +4,8 ккал/моль
(тобто є позитивною - стандартна вільна енергія зростає). Проте, ця величина не має великого сенсу: енергетичний ефект реакції ∆G дорівнює ∆G* при концентраціях усіх компонентів 1 моль/л. Але концентрації води та протонів зберігаються постійними як у буферному розчині in vitro, так і в клітині; причому вони значно відрізняються від 1 моль/л (у розведеному розчині [H 2 O] = 55,5 моль/л, при рН 7,0 [Н + ] = 10 7 моль/л). Отже, відношення цих концентрацій - також постійна величина, і можна ввести іншу, більш змістовну, стандартну вільну енергію реакції
Підстановка значень концентрацій води й протонів дає ∆G 0 = -7,3 ккал/моль, що вказує на енергетичну вигідність реакції гідролізу. Головний внесок дає той факт, що в реакції народжується вільний протон: за законом діючих мас, підтримання на дуже низькому рівні загальної концентрації протонів має зсувати рівновагу в бік їхнього утворення. Але в клітинах концентрації усіх компонентів, що залишилися в останньому рівнянні, також підтримуються на певних рівнях: 3÷8 ммоль/л АТР; 0,2÷1 ммоль/л ADP; 2÷8 ммоль/л неорганічного фосфату. Підстановка цих значень дає реальний енергетичний ефект від гідролізу АТР: ∆G = -12 ÷ -16 ккал/моль. Ця енергія використовується двома шляхами: 1) для хімічної модифікації субстратів, які самі по собі не можуть вступити в певну реакцію (головним чином, маються на увазі реакції синтезу), оскільки вона супроводжувалась би зростанням вільної енергії; 2) для виконання механічної роботи молекулярними машинами.