Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
радиотехнические цепи часть1.DOC
Скачиваний:
36
Добавлен:
14.09.2019
Размер:
1.96 Mб
Скачать

Гармонический анализ периодических сигналов

При разложении периодического сигнала s(t) в ряд Фурье по тригонометрическим функциям в качестве ортогональной системы берут

или

Интервал ортогональности определяется нормой функции

— среднее значение функции за период.

основная формула для

определения ряда Фурье

Модуль — четная функция, фаза — нечетная функция.

Тогда

Рассмотрим пару для к-го члена

разложение ряда Фурье

Примеры спектров периодических сигналов

  1. Прямоугольное колебание. Подобное колебание, часто называемое меандром (Меандр — греческое слово, обозначающее “орнамент”), находит особенно широкое применение в измерительной технике.

Гармонический анализ непериодических сигналов

Пусть сигнал s(t) задан в виде некоторой функции, отличной от нуля в промежутке (t1,t2). Этот сигнал должен быть интегрируем.

Возьмем бесконечный отрезок времени Т, включающий в себя промежуток (t1,t2). Тогда . Спектр непериодического сигнала является сплошным. Заданный сигнал можно представить в виде ряда Фурье , где

На основании этого получим:

Поскольку Т®µ, то сумму можно заменить интегрированием, а W1 на dW и nW1 на W. Таким образом мы прейдем к двойному интегралу Фурье

,

где — спектральная плотность сигнала. Когда интервал (t1,t2) не уточнен интеграл имеет бесконечные пределы. Это есть обратное и прямое преобразование Фурье, соответственно.

Если сравнить выражения для огибающей сплошного спектра (модуль спектральной плотности) непериодического сигнала и огибающей линейчатого спектра периодического сигнала, то будет видно, что они совпадают по форме, но отличаются масштабом .

Следовательно, спектральная плотность S(W) обладает всеми основными свойствами комплексного ряда Фурье. Т. е. можно записать , где

, а .

Модуль спектральной плотности является нечетной функцией и его можно рассматривать как амплитудно-частотную характеристику. Аргумент — нечетная функция рассматриваемая как фазо-частотная характеристика.

На основании этого сигнал можно выразить следующим образом

Из четности модуля и нечетности фазы следует, что подынтегральная функция в первом случая является четной, а во втором — нечетной относительно W. следовательно второй интеграл равен нулю (нечетная функция в четных пределах) и окончательно .

Отметим, что при W=0 выражение для спектральной плотности равно площади под кривой s(t)

.

Свойства преобразования Фурье Сдвиг сигнала во времени

Пусть сигнал s1(t) произвольной формы обладает спектральной плотностью S1(W). При задержке этого сигнала на время t0 получим новую функцию времени s2(t)=s1(t-t0). Спектральная плотность сигнала s2(t) будет следующая . Введем новую переменную . Отсюда .

Любому сигналу соответствует своя спектральная плотность. Сдвиг сигнала по оси времени приводит к изменению его фазы, а модуль этого сигнала не зависит от положения сигнала на оси времени.