
- •Вопросы к экзамену по биологии (теоретическая часть)
- •1.Уровни организации живой природы. Молекулярный:
- •2.Химический состав клетки. Роль органических веществ в ее строении жизнедеятельности.
- •3.Развитие знаний о клетке. Основные положения в клеточной теории.
- •4.Клетка – структурная и функциональная единица организмов всех царств живой природы.
- •5.Строение и жизнедеятельность растительной клетки.
- •6.Строение и жизнедеятельность животной клетки.
- •7.Вирусы, их строение и функционирование. Вирусы – возбудители опасных заболеваний.
- •9.Энергетический обмен в клетках, его значение. Роль митохондрий в нем.
- •10.Пластический обмен. Биосинтез белка. Роль ядра и эндоплазматической сети в этом процессе. Матричный характер реакции биосинтеза.
- •11.Особенности пластического обмена у растений. Фотосинтез. Строение хлоропластов и роль в этом процессе.
- •13.Нуклеиновые кислоты, их виды и функции в организме.
- •15.Понятие о гене. Генетический код, его свойства.
- •16.Белки, их строение и функции в организме.
- •Размножение и индивидуальное развитие организмов.
- •17.Половые клетки. Норма реакции.Размножение. Строение и функции мужских и женских гамет. Развитие половых клеток
- •18.Деление клеток – основа размножения и роста организмов.
- •19.Мейоз, его значение, отличие от митоза. Набор хромосом в гаметах и соматических клетках.
- •20.Половое размножение организмов. Оплодотворение, его значение. Зигота – начало индивидуального развития организмов.
- •21.Индивидульное развитие организмов. Эмбриональное развитие животных (на примере ланцетника).
- •22.Размножение, его роль в природе. Половое и бесполое размножение организмов.
- •Способы бесполого размножения
- •2) Спорообразование
- •Способы полового размножения
- •Основы селекции, генетики и биотехнологии.
- •23.Модификационная изменчивость, её значение в жизни организма. Норма реакции.
- •24.Наследственная изменчивость, ее виды. Виды мутаций, их причины. Роль мутации и эволюции органического мира и селекции.
- •25.Наследственность, её материальные основы. Гибридологический метод изучения наследственности. Моногибридное и дигибридное скрещивание.
- •26. Правило единообразия гибридов первого поколения. Наследование доминантных и рецессивных признаков. Генотип и фенотип.
- •27.Генотип как целостная система. Типы взаимодействия генов. Кодоминирование. Наследование групп крови человека.
- •28. Методы изучения генетики человека. Наследственные болезни, их причины и профилактика.
- •29.Закон независимого наследования признаков. Причины расщепление признаков у гетерозигот.
- •31.Половые хромосомы и аутосомы. Сцепленное с полом наследование. Причины наследования гемофилии по материнской линии. Причины более частого заболевания гемофилии у мужчин.
- •33.Основные методы селекции растений и животных: гибридизация и искусственный отбор.
- •Основы учения об эволюции. Антропогенез.
- •35.История развития эволюционных идей. Оценка работ к.Линнея. Ж.Б.Ламарка, ч.Дарвина.
- •37.Палеонтологические , сравнительно-анатомические , эмбриологические док-ва эволюции органического мира.
- •38.Ароморфрз – главное направление эволюции. Основные ароморфозы в эволюции многоклеточных организмов.
- •39.Основные ароморфозы в эволюции растительного мира.
- •40.Идиоадаптация – направление эволюции органического мира. Значение идиоадаптации у птиц и покрытосеменных растений.
- •41.Движущие силы эволюции, их роль в образовании новых видов.
- •42.Многообразие видов в природе, его причины. Биологический прогресс и биологический регресс. Влияние деятельности человека на многообразие видов.
- •44.Движущие силы эволюции человека. Основные стадии эволюции человека. Биологически и социальные факторы эволюции.
- •45.Приспособленность организмов к среде обитания, её причины. Относительный характер приспособленности организмов. Приспособленность растений к использованию света в биогеоценозе.
- •46.Экологические и географические видообразование, их сходство и различие.
- •Основы экологии. Биосфера.
- •47.Экологические факторы, их характеристика и влияние на организмы.
- •48.Популяция – структурная единица вида. Численность популяции. Причины колебания численности популяций. Взаимоотношение в популяциях и между различными популяциями одного и разных видов.
- •49.Причины устойчивости экосистемы, их смена. Антропогенные изменения экосистемы.
- •50.Искусственные сообщества – агроэкосистемы, их отличие от биогеоценозов. Круговорот веществ в агроценозеи пути повышение его продуктивности.
- •56.Саморегуляция в биогеоценозе. Многообразие видов, их приспособленность к совместному обитанию, колебание численности популяции.
- •57.Изменения в биогеоценозах. Причины смены биогеоценозов. Охрана биогеоценозов – главный путь сохранения видов.
- •58.Живое вещество, его роль в круговороте веществ и прекращении энергии в биосфере. Солнце – источник энергии для круговорота веществ.
- •59.Изменения в биосфере под влиянием деятельности человека. Сохранение равновесия в биосфере как основа её целостности.
- •60.Учение в.И Вернадского о биосфере. Ведущая роль живого вещества в преобразовании биосферы. Влияние деятельности человека на биосферу, сохранения равновесия в ней.
- •Практическая часть.
3.Развитие знаний о клетке. Основные положения в клеточной теории.
Цитология – наука о клетке. История изучения клетки связана с именами таких учёных, как Роберт Гук, Антони ван Левенгук, Маттис Шлейден и Теодор Шванн. Роберт Гук в 1665 году вводит термин «клетка». Он впервые применил микроскоп для исследования тканей, и на срезе пробки и сердцевины бузины увидел ячейки, которые и назвал клетками. Антони ван Левенгук впервые в 1674 году открыл микромир, для чего использовал световой микроскопии увидел клетки под увеличением в 270 раз. В 1831 г. Р. Броун открыл ядро. Маттис Шлейден и Теодор Шванн в 1839 г. создают клеточную теорию. В работе «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839) Т. Шванн сформулировал основные положения клеточной теории, которые затем неоднократно дополнялись и уточнялись. Современная клеточная теория включает следующие положения: 1. Все живые организмы состоят из клеток. Клетка – структурная, функциональная единица живого, основная единица строения и развития всех живых организмов, наименьшая единица живого; 2. Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ. 3. Размножение клеток происходит путём их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки. 4. В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции. 5. Клеточное строение организмов – свидетельство того, что все живые организмы имеют единое происхождение.
Значение клеточной теории в развитии науки состоит в том, что благодаря ей стало понятно, что клетка – это важнейшая составляющая часть всех живых организмов. Она их главный «строительный» компонент, клетка является эмбриональной основой многоклеточного организма, т.к. развитие организма начинается с одной клетки – зиготы. Клетка – основа физиологических и биохимических процессов в организме, т.к. на клеточном уровне происходят, в конечном счёте, все физиологически и биохимические процессы. Клеточная теория позволила придти к выводу о сходстве химического состава всех клеток и ещё раз подтвердила единство всего органического мира. Все живые организмы состоят из клеток – из одной клетки (простейшие) или многих (многоклеточные). Клетка – это один из основных структурных, функциональных и воспроизводящих элементов живой материи; это элементарная живая система. Существует эволюционно неклеточные организмы (вирусы), но и они могут размножаться только в клетках. Различные клетки отличаются друг от друга и по строению, и по размерам (размеры клеток колеблются от 1мкм до нескольких сантиметров – это яйцеклетки рыб и птиц), и по форме (могут быть круглые как эритроциты, древовидные как нейроны), и по биохимическим характеристикам (например, в клетках, содержащих хлорофолл или бактериохлорофилл, идут процессы фотосинтеза, которые невозможны при отсутствии этих пигментов), и по функциям (различают половые клетки – гаметы и соматические – клетки тела, которые в свою очередь подразделяются на множество разных типов). Методы изучения клетки: 1. Дифференциальное-центрифугирование (органеллы различной плотности выпадают в центрифуге слоями). 2. Метод меченых атомов (при изучении биохимических процессов в вещество вводят радиоактивную метку, которая сигнализирует радиоактивным излучением). 3. Микроскопирование (световой, электронный микроскопы).