
- •Введение
- •1. Основы молекулярно- кинетической теории (мкт).
- •1.1 Количественное выражение элементов системы.
- •1.2 Мкт газов.
- •1.3 Изопроцессы
- •1.4 Закон Авагадро.
- •1.5 Закон Дальтона.
- •1.6 Вероятный характер скорости хаотического движения.
- •1.7 Реальные газы
- •2 Термодинамика
- •2.1 Основные понятия и определения термодинамики.
- •2.2 Понятие о тд системах.
- •2.3 Законы начала термодинамики. Их использование.
- •2.4 Термохимия. Использование первого закона тд.
- •2.5 Закон Гесса.
- •2.6 Теплота образования
- •2.7. Теплота растворения
- •2.8 Теплота нейтрализации
- •2.9 Зависимость тепловых эффектов от температуры.
- •3 Второй закон термодинамики
- •3.1 Обратимые и необратимые процессы.
- •3.2 Характеристические функции тд систем.
- •3.3 Направление протекания процессов.
- •3.4 Химический потенциал
- •4.1 Закон действия масс. Константа равновесия.
- •4.2 Правило фаз
- •4.3 Общие представления о диаграммах состояния.
- •4.4 Однокомпонентные системы
- •4.5 Двухкомпонентные системы
- •4.6 Основные виды диаграмм состояния двухкомпонентных систем.
- •4.7 Термический анализ.
- •4.8 Фазовые переходы
- •5 Закон Рауля.
- •6 Физико-химические особенности процессов подготовки подложек при получении эс и микроэлектронных изделий
- •6.1 Поверхностные явления при изготовлении ис, эс
- •6.2. Технология очистки подложек для производства микроэлектронных изделий
- •6.2.1. Важность снижения уровня загрязнений
- •6.2.2. Классификация загрязнений
- •6.2.3. Источники загрязнений
- •6.3. Влияние загрязнений на характеристики микроэлектронных изделий
- •6.3.1. Механические загрязнения
- •6.3.2. Металлические загрязнения
- •6.3.3. Микронеровности поверхности
- •6.3.4. Кристаллические дефекты
- •6.4. Механические загрязнения на поверхности полупроводниковых пластин
- •6.4.1. Адгезия механических частиц на поверхность полупроводниковых пластин
- •6.4.2. Удаление загрязнений с поверхности пластин в процессах химической обработки
- •6.4.3. Очистка поверхности подложек в перекисно-аммиачном растворе
- •6.5. Методы исследования состояния и характеристик поверхности подложек
- •6.5.1. Методы анализа частиц на поверхности пластин
- •6.5.2. Методы анализа органических загрязнений на поверхности пластин
- •6.5.3. Методы анализа металлических загрязнений на поверхности пластин
- •6.5.4. Методы исследования рельефа поверхности подложек
- •6.6. Технологические процессы очистки поверхности полупроводниковых пластин
- •6.6.1. "Жидкостная" химическая обработка
- •6.6.2. Методы проведения "жидкостной" химической обработки
- •6.6.3. "Сухая" химическая обработка
- •6.7. Проблемы очистки поверхности полупроводниковых пластин
- •6.7.1. Влияние химической обработки на шероховатость поверхности Si пластин
- •6.7.2. Проблемы нежелательного формирования слоев оксида на поверхности кремниевых пластин
- •6.7.3. Органические загрязнения на поверхности полупроводниковых пластин
- •7. Физико-химические аспекты получения многослойных структур
- •7.1. Имплантация ионов водорода в кремниевые пластины
- •7.2. Особенности технологии прямого сращивания подложек
- •7.3. Сращивание пластин, покрытых SiO2
- •7.4. Состояние сращенных пластин
- •7.5. Плоскостность пластин
- •7.6. Утончение сращенных пластин
- •7.7. Микродефекты сращенных структур
- •7.8. Радиационные свойства многослойных структур
- •7.9. Движение и залечивание пор на границе сращивания стандартных пластин кремния
- •7.9.1. Скорость движения пор, связанных с диффузионными потоками в объеме матрицы, в поле температурного градиента
- •7.9.2. Скорость перемещения пор за счет диффузии атомов на ее поверхности в поле температурного градиента
- •7.9.3. Скорость перемещения пор за счет диффузии атомов в объеме в поле температурного градиента
- •7.9.4. Скорость движения пор в неоднородном поле напряжений при разных механизмах перемещения
- •7.9.5. Диффузионное движение пор вблизи границы кристалла, обусловленное поверхностной диффузией
- •7.9.6. Диффузионное движение пор под действием сил со стороны дислокаций
- •7.9.7. Рекристаллизация, спекание и залечивание пор
- •7.10. Пористый кремний в технологии прямого соединения
- •7.10.1. Теория и экспериментальные исследования заращивания пористых слоев
- •7.10.2 Осаждение слоев кремния на стенках пор и капилляров из парогазовых смесей
- •8. Исследование физико-химических свойств многослойных структур
- •8.1. Определение энергии связи прямого связывания пластин кремния методом генерации трещины между поверхностями сращивания
- •8.2. Исследование многослойных структур и материалов, используемых в процессе их производства эс, методами позитронной аннигиляционной спектроскопии
- •8.2.1. Сущность и особенности методов позитронной аннигиляционной спектроскопии
- •8.2.2. Теория метода ураф и результаты исследований
- •8.2.3. Определение концентрации электронов np в зоне проводимости металлов
- •8.2.4. Исследование полупроводников методом пас
- •8.3. Исследование поверхности пластин
- •8.3.1. Метод масс-спектрометрического исследования процесса термодесорбции с поверхности кремниевых пластин
- •8.3.2. Измерения контактной разности потенциалов подложек
- •8.3.3. Влияние адсорбции на электронные свойства поверхности твердых тел
- •Список литературы к главе 8
6.7. Проблемы очистки поверхности полупроводниковых пластин
Следует выделить следующие требования к процессам химической обработки полупроводниковых пластин в современной технологии изготовления ИС:
- ультрачистый процесс очистки с минимальным уровнем остаточных загрязнений разных типов на поверхности подложек;
- удаление естественного слоя SiO2, водородных связей с поверхности подложек;
- минимальный уровень микронеровности поверхности полупроводниковых пластин на атомном уровне.
Для обеспечения этих требований непрерывно развиваются процессы очистки, разрабатываются методики контроля состояния поверхности и др. [2].
6.7.1. Влияние химической обработки на шероховатость поверхности Si пластин
Проведены исследования влияния наиболее распространенных процессов химической обработки на состояние поверхности полупроводниковых пластин. В данном случае рассматривались следующие процессы:
- последовательная обработка подложек погружением в раствор смеси серной кислоты (H2SO4) и перекиси водорода (H2O2) в объемном соотношении 7:3, при температуре 130 С, в течение 3 мин; затем обработка в растворе смеси водного раствора аммиака (NH4OH), H2O2 и воды в объемном соотношении 1:1:6,5, при температуре 65 С, в течение 10 мин; далее отмывка в воде, сушка;
- обработка подложек погружением в раствор смеси NH4OH, H2O2 и воды в объемном соотношении 1:1:6,5, при температуре 20 С, в течение 10 мин, с применением звуковых волн частотой 850 кГц, мощностью 250 Вт; далее отмывка в воде, сушка;
- последовательная обработка подложек аэрозольно-капельным распылением растворов H2 SO4, H2O2 в объемном соотношении 4:1, при температуре 110 С, в течение 90 с; затем обработка раствором плавиковой кислоты (HF) и воды в объемном соотношении 1:100, при температуре 20 С, в течение 40 с; далее обработка в растворе смеси NH4OH, H2O2 и воды в объемном соотношении 1:2:12, при температуре 60 С, в течение 4 мин; затем обработка в смеси соляной кислоты (HCl), H2O2 и воды, в объемном соотношении 1:2:12, при температуре 60 С, в течение 2,5 мин; в заключение отмывка в воде, сушка.
Основные результаты исследований характеристик поверхности пластин Si получены с применением измерений на АСМ "Solver P47". Сравнение образцов пластин КДБ-12 (100) проводилось по величине Rmax – максимум-минимум, вычисляемой по формуле
Rmax = Zmax – Zmin (6.1)
и величина Ra – (шероховатость), вычисляемой по формуле
.
(6.2)
На рис.6.10 приведена поверхность исходной пластины Si, представлен профиль шероховатости и распределение неровностей поверхности исходной Si пластины. На рис.6.11 изображены поверхности и профиль шероховатости после проведения обработки Si пластин в буферном растворе NH4HF2 до полного удаления слоя SiO2 с поверхности подложек. Характеристики поверхности пластины после подобной обработки практически не меняются. На рис.6.12 приведены изображения поверхности и профиль шероховатости поверхности подложки после проведения обработки Si пластин погружением в растворах H2SO4/H2O2, NH4OH/H2O2/H2O. Обработка в вышеуказанных растворах приводит к увеличению значений Rmax в 3,1 раза и Ra в 1,5 раза по сравнению с исходными образцами. Анализ внешнего вида поверхности, профиля шероховатости, распределения неровностей по размеру показал существенное увеличение значений Rmax за счет присутствия загрязнений, химически связанных с поверхностью.
Рис.6.10. Поверхность исходной Si пластины: а – внешний вид поверхности образца; б – профиль шероховатости поверхности подложеки; в – изометрическое изображение поверхности образца; г – распределение неровностей поверхности по размерам
Рис.6.11. Поверхность Si пластины после обработки в буферном растворе: а – внешний вид поверхности образца; б – профиль шероховатости поверхности; в – изометрическое изображение поверхности образца; г – распределение неровностей поверхности по размерам
Рис.6.12. Поверхность Si пластины после обработки методом погружения по стандартной методике в растворы H2SO4/H2O2, NH4OH/H2O2/H2O: а – внешний вид поверхности образца; б – профиль шероховатости поверхности; в – изометрическое изображение поверхности образца; г – распределение неровностей поверхности по размерам
На рис.6.13 приведены изображения поверхности и профиль шероховатости Si пластин после обработки аэрозольно-капельным распылением растворов H2SO4/H2O2; H2O/HF; NH4OH/H2O2/H2O; HCl/H2O2/H2O. Значения Rmax увеличились в 1,6 раза, Ra – в 2,3 раза по сравнению с исходными образцами. Анализ профиля шероховатости, распределения неровностей по размеру показал наличие локальных неровностей поверхности образцов. Анализ результатов внешнего вида и шероховатости поверхности показал значительное различие внешнего вида гидрофильных и гидрофобных поверхностей Si пластин.
Рис.6.13. Поверхность Si пластины после обработки аэрозольно-капельным распылением растворов H2SO4/H2O2; H2O/HF; NH4OH/H2O2/H2O; HCl/H2O2/H2O: а – внешний вид поверхности образца; б – профиль шероховатости поверхности; в – изометрическое изображение поверхности образца; г – распределение неровностей поверхности по размерам
Исследования показали, что существующие процессы химической обработки приводят к ухудшению характеристик поверхности, увеличению значений максимальной высоты неровностей Rmax, шероховатости Ra. Установлено, что обработка в водном растворе HF и буферном растворе при температуре 20 С приводит к минимальным изменениям характеристик поверхности. При использовании полупроводниковых пластин в процессе изготовления ИС с Bmin < 1 мкм, для получения структур КНИ методом сращивания подложек и в других случаях, когда нужна максимально гладкая поверхность, необходимо снижение уровня шероховатости, максимальных неровностей поверхности и специальный отбор кремниевых пластин и химических реактивов.