Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Doslid_Operaz.doc
Скачиваний:
12
Добавлен:
09.09.2019
Размер:
3.68 Mб
Скачать

4. Модель розподілу ресурсів

Модель «затрати-випуск» В.В. Леонтьєва характеризує лише деякі особливості закритого виробництва. Насправді ситуація складніша, оскільки за умови закритого виробництва необхідні початкові ресурси для початку виробництва, які під час функціонування економічної системи можуть відтворюватися, але в стартовій ситуації мають бути в наявності як складова частина виробництва. Залежно від кількості цих ресурсів прибуток буде різним, а тому виникає задача раціонального (оптимального) їх розподілу.

Будемо вважати, що, крім балансових рівнянь В.В. Леонтьєва (3.1), (3.2) у нашій моделі є критерій оптимальності:

який характеризує сумарний прибуток об’єкта економічної діяльності. – вектор вартостей; – вартість одиниці продукції і-го виду .

Крім того, задано вектор , що характеризує запаси ресурсів, які є на виробництві. Задано матрицю з невід’ємними елементами, тоді можна записати

або

де – нормативний коефіцієнт, який характеризує кількість і-го ресурсу необхідного для виготовлення одиниці j-го продукту із застосуванням заданого технологічного циклу в виробництві.

Звідси випливає, що задачу розподілу ресурсів можна сформулювати так: потрібно знайти такий набір значень компонент вектора для якого виконується умова (забезпечення максимального прибутку):

при

та

(4.1)

Якщо матриця продуктивна, то з (3.1) можна знайти , а підставивши х0 у (4.1) одержимо задачу: знайти такі, щоб

, (4.2)

а

(4.3)

де ,

До виробничих (технологічних) обмежень можуть бути долучені і обмеження екологічного, соціального характеру та ін. Тому серед обмежень (4.2), (4.3) можуть бути і такі, що потребують виконання їх або нерівностей оберненого знака до (4.2), (4.3). У загальному вигляді задача оптимального розподілу ресурсів зводиться до розв’язання задачі лінійного програмування (ЗЛП).

5. Загальний вигляд задачі лінійного програмування

Потрібно знайти вектор , який забезпечує найбільше (max) або найменше (min) значення функції:

(5.1)

за виконання умов:

(5.2)

Числа – довільні дійсні числа.

Будемо вважати, що завжди в (5.1) стоїть знак «mах». Це припущення не зменшує загальності міркувань, адже заміною змінних будь-яку ЗЛП можна завжди звести до процедури максимізації L, якщо для L у (5.1) стояла вимога її мінімізації. Так само в (5.2) множенням на «» правої та лівої частини нерівності, у якій стоїть знак «», можна досягнути стандарту (5.2). Якщо в нерівностях (5.2) є знак «=», наприклад, при і0-ій нерівності, тоді замість однієї рівності можна записати дві еквівалентні нерівності:

Задачу (5.2),(5.3) можна розв’язати за допомогою симплекс-методу [1], а задачі малої розмірності (n=2,3) – графічно.

6. Графічний метод розв’язання задачі лінійного програмування

Приклад. Знайти найбільше та найменше значення функції

якщо х1 та х2 задовольняють нерівностям (лежать в області D1):

(6.1)

Розв’язування: – нормалі до прямих, які утворені заміною знаків «» та «» на знак «=». – нормаль до прямої

Будуємо область D1 (рис. 1).

Рис. 1

Алгоритм побудови області D1, може бути таким:

  1. Будуємо прямокутник Р: ( ).

  2. У побудованому прямокутнику шукаємо точки, які задовольняють першу нерівність Для цього будуємо пряму за двома точками перетину з осями координат (0, 6) та (6, 0). Пряма ділить прямокутник Р на дві частини. Та частина прямокутника, яка лежить у напрямку від прямої, має значення лівої частини рівності більші за 6 (у напрямку нормалі лінійна функція зростає), але щоб задовольнити першу нерівність треба розглядати всі значення х1 та х2 для яких ліва частина нерівності менша за 6. Цю умову буде виконано якщо в прямокутнику Р узяти частину, яка лежить на самій прямій та в напрямку антинормалі . Тобто, щоб задовольнити першу нерівність, треба брати точки прямокутника Р, які лежать на прямій і нижче від неї.

  3. В одержаному чотирикутнику (трапеції), слід залишити лише ті точки, які задовольняють другу з нерівностей (6.1): . Аналогічно, як і в попередньому пункті, будуємо пряму . Точки, що нас цікавлять (де ) лежать в напрямку нормалі до прямої l2, та на самій прямій.

  4. В одержаному трикутнику слід вилучити точки, які не задовольняють умову (третій нерівності в (6.1)). Будуємо пряму і вибираємо точки на прямій та поза прямою в бік антинормалі . Одержимо знову чотирикутник (див. рис. 1).

  5. Завершуємо побудову області D1, вилученням з одержаного чотирикутника точок, що не задовольняють нерівності . Це точки, які лежать поза прямою в напрямку антинормалі . Одержуємо п’ятикутник АВСDE. Переходимо до виконання пункту 2.

Шукаємо оптимальні розв’язки.

  1. знаходиться в крайній точці області D1, в напрямку нормалі до L, .

  2. знаходиться в крайній точці області D1 в напрямку антинормалі . Крайньою точкою області D1 будемо називати точку у якій перетинаються пряма з областю так, що будь-яке зміщення цієї прямої в окіл точки ( в напрямку ) спричиняє відсутність на прямій точок області D1; d – величина (відстань) на яку зміщується пряма в напрямку нормалі або антинормалі.

знаходиться шляхом обчислення функції L у точці перетину прямих l2 та l3 (напрям ). Точку перетину знаходять як результат розв’язку системи рівнянь – значення функції L у точці перетину осі х2 з прямою l1 (напрям ). Точку перетину знаходять через розв’язання системи рівнянь

Відповідь: .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]