Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Doslid_Operaz.doc
Скачиваний:
12
Добавлен:
09.09.2019
Размер:
3.68 Mб
Скачать

Завдання для самостійних і контрольних робіт

Розв’язати виробничо-транспортні задачі.

Транспортні таблиці мають такий вигляд:

І.

С1

С2

М1

М2

4

6

4

6

5

5

6

5

6

6

4

4

ІІ.

С1

С2

М1

М2

4

6

4

6

5

5

6

5

6

6

4

4

Примітка: – підприємства, що випускають продукцію 1-го виду, і=1,2;

– підприємства, що випускають продукцію 2-го виду, і=1,2;

С1, С2 – склади; М1, М2 –магазини.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

16. Динамічна модель оптимального керування. Принцип максимуму л. С. Понтрягіна

Розглянемо математичну модель оптимального керування. Нехай математична модель економічної системи має вигляд:

(16.1)

–похідна функції x(t) за t. – неперервно-диференційовані функції за фазовими змінними ; – вектор-параметр керування, який знаходиться в розпорядженні ОПР. , де U – множина змінних вектор-параметра керування.

Будемо вважати, що треба перевести систему за фіксований час Т із стартового стану у такий стан , у якому функціонал:

, (16.2)

де – диференційована функція аргументів , досягає найменшого значення. Тобто, треба знайти таке оптимальне керування, набір з множини U, і відповідну йому оптимальну траєкторію, що мінімізують функціонал (16.2).

Спряженою до (16.1) будемо називати систему рівнянь:

(16.3)

де H – функція Гамільтона:

, .

Сформулюємо теорему [4]: принцип максимуму Л. С. Понтрягіна.

Теорема. Для розв’язання задачі (16.1), (16.2) необхідне виконання умови:

(16.4)

або

при кожному , що задовольняє (16.3).

Очевидно, у разі виконання умови (16.4) на єдиному наборі , та існування розв’язку задачі оптимального керування принцип максимуму є і достатньою умовою оптимальності на розв’язках задачі (16.1), (16.3).

Проілюструємо застосування принципу максимуму на конкретному прикладі. Функції будемо вважати залежними від часу.

Приклад. Розв’язати макроекономічну задачу оптимального керування [7], якщо модель системи описується диференційним рівнянням вигляду:

(16.5)

де х – відношення основного капіталу до кількості населення; u – частка національного доходу, спрямована на збільшення основного капіталу; n – амортизаційна постійна; – виробнича функція.

Математична модель (16.5) побудована на допущенні, що частка оплати праці дорівнює ; – задані числа, .

Задача полягає у знаходженні , що забезпечує мінімальне значення функціоналу:

(16.6)

де – наперед задані додатні числа.

Алгоритм розв’язку задачі:

  1. Будуємо функцію Гамільтона для задачі (16.5),(16.6):

,

де

(16.7)

  1. Згідно з принципом максимуму:

Спочатку не будемо зважати на нерівності . Тоді:

або (16.8)

Підставимо отримане значення в (16.7).

(16.9)

Отримаємо диференціальне рівняння з відокремлюваними змінними.

  1. Розв’яжемо рівняння (16.9)

Враховуючи , отримаємо:

Оскільки знайдено , для оптимального керування , що задовольняє принцип максимуму (16.4), то можна вважати .

  1. Знайдемо траєкторію , для оптимального керування:

або

Враховуючи початкову умову

Підставляючи значення в (16.8) отримаємо

Знайдемо розв’язок для кожного з трьох випадків:

Проведемо заміну змінних:

Як і в попередньому випадку покладемо:

(16.19)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]