Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИЧЕСКАЯ ТЕРМОДИНАМИКА.doc
Скачиваний:
27
Добавлен:
08.09.2019
Размер:
1.62 Mб
Скачать

Работа газа при политропических процессах

Работу газа при любом процессе можно вычислять и при помощи первого начала термодинамики:

Из формулы получаем . Тогда работа газа в политропическом процессе:

.

В изотермическом процессе вычислять работу по этой формуле не удобно так как в этом случае и А = 0/0. Поэтому в изотермическом процессе

.

Газ Ван-дер-Ваальса

С ростом давления уравнение состояния идеального газа требует корректировки при описании поведения реальных газов. При р = 1000 атм (108 Па) произведение р.V становится вдвое больше, чем предписывает модель идеального газа для конкретной температуры (газ не «сжимается»).

Причин для такого отклонения две:

1) собственный размер молекул, уменьшающий объём, доступный для движения молекул (при нормальных условиях он составляет ~ 0,07% объёма сосуда с газом, а при 100 атм уже 70%);

2 ) сложный характер взаимодействия между молекулами.

На рисунке приведена типичная кривая зависимости потенциальной энергии взаимодействия UВЗ молекул от расстояния между их центрами.

На малых расстояниях (r < ro) молекулы отталкиваются, на больших (r > ro) притягиваются.

Для описания реального (неидеального) газа пользуются уравнением Ван-дер-Ваальса:

, где

a и b постоянные Ван-дер-Ваальса (для разных газов они имеют свои значения).

Поправка обусловлена силами притяжения между молекулами. Она имеет размерность давления, и её иногда называют внутренним давлением.

Поправка b связана с собственным объёмом молекул.

Внутренняя энергия газа Ван-дер-Ваальса

Внутренняя энергия ванн-дер-ваальсовского газа

.

суммарная кинетическая энергия молекул в Ц-системе, связанной с сосудом;

– суммарная энергия взаимодействия молекул (собственная потенциальная энергия).

Если газ расширяется в пустоту без теплообмена с окружающими телами, то , и согласно первому началу термодинамики в этом процессе U = = const. Получается, что с ростом объёма температура реального газа уменьшается (в отличие от идеального газа).

Лекция 13 Тепловые и холодильные машины

Тепловые машины (двигатели внутреннего сгорания, реактивные двигатели, газовые турбины и др.) предназначены для получения полезной работы за счёт теплоты, выделяемой вследствие сгорания топлива, ядерных превращений, нагрева солнечными лучами или по другим причинам. Ниже приведена условная схема тепловой машины (а) и её термодинамический цикл (б).

В качестве холодильника часто выступает окружающая среда. В космических энергоустановках окружающая среда отсутствует и необходим специальный холодильник-излучатель.

Наличие холодильника и передача ему части полученной от нагревателя теплоты является обязательным, так как иначе работа тепловой машины невозможна. Вычисляемая по первому началу термодинамики величина QX является отрицательной т.к. это количество теплоты поступает не к рабочему телу, а от него к холодильнику.

В соответствии с первым началом внутренняя энергия за цикл (круговой процесс) не изменяется. Совершённая рабочим телом механическая работа равна разности подведённой и отведённой теплоты:

.

Тепловой коэффициент полезного действия (КПД) цикла любой тепловой машины можно рассчитать как отношение полезной работы к количеству теплоты, переданной рабочему телу от нагревателя:

.

Термодинамический цикл, осуществляемый в обратном направлении . может быть использован для работы холодильной машины.

В холодильной машине внешние тела совершают работу А* над рабочим телом и происходит отвод теплоты QОХЛ от охлаждаемого тела и передача теплоты QТР (величина отрицательная) тепловому резервуару, в качестве которого обычно выступает окружающая среда.

Холодильный коэффициент холодильной машины определяют как отношение отведённого от охлаждаемого тела количества теплоты к затраченной для этого механической работе А* :

.

Холодильный коэффициент холодильной машины в отличие от КПД тепловой машины может быть как больше, так и меньше единицы.

Холодильная машина может использоваться не только для охлаждения различных предметов, но и как тепловой насос для отопления помещений. В этом случае тепловым резервуаром является обогреваемое помещение, а теплота QОХЛ отводится из менее нагретой окружающей среды. Термодинамические циклы холодильной машины и теплового насоса совпадают.

КПД теплового насоса определяют как отношение полученного нагреваемым помещением количества теплоты к затраченной для этого механической работе:

.

Видно, что КПД теплового насоса обязательно должен быть больше единицы.

Преимущество теплового насоса по сравнению с обычным электрическим нагревателем заключается в том, что на нагрев помещений используется не только преобразованная в теплоту электроэнергия, но и теплота, отобранная от окружающей среды.