Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
xe_pismennye_raboty.docx
Скачиваний:
3
Добавлен:
06.09.2019
Размер:
59.53 Кб
Скачать
  1. Панорама современного естествознания: новые горизонты и открытия (обзор открытий в фундаментальных естественных науках)

Журнал «Наука и жизнь» №10 2009г.

«Астрономы открыли новый тип черных дыр»

«…Астрономы с помощью орбитальной обсерватории «Ньютон» Европейского космического агентства открыли чёрную дыру, масса которой составляет 500 масс Солнца. Новый объект получил название HLX-1. Анализируя его рентгеновское свечение, исследователи обнаружили, что оно не никакому другому объекту, кроме как чёрная дыра. Отсняли в 2008г.»

Журнал «Наука и жизнь» №7 2008г.

«Рентгеновские тайны Галактики»

«…Заданное свечение диска Галактики в рентгеновских лучах открытое более 25 лет назад наконец-то нашло свое объяснение. Группа астрофизиков из Института космических исследований РАН (ИКИ РАН) под руководством Михаила Ревнивцева экспериментально показали, что рентгеновское излучение диска полей Галактики складывается из излучений миллионов слабых источников – в основном так называемых белых карликов, звёзд с активными коронами».

Журнал «Наука и жизнь» №1 2010г.

«Счётчик клеточного времени» «…В октябре 2009г. в Стокгольме объявлены были имена лауреатов Нобелевской премии по физиологии и медицине: это американским учёные Элизабет Биэкбёрн, Кэрол Грейдер, Джек Шостак, удостоившиеся самой престижной научной награды дословно: «за открытие того, как теломеры и фермент теломераза защищают хромосомы».

Журнал «Наука и жизнь» №2 2010г.

«Зворыкинский проект: история не повторится»

«…Министр образования науки А. Фурсенко в своем выступлении говорил о том, что в последние годы очень изменилась тематика инновационных проектов. Раньше считалось, что настоящие инновации могут быть только в физике, энергетике, космических технологиях, но половина финансистов и все трое лареатов национальной премии в сфере инноваций в 2009г. представили работы по биотехнологии и медицине»

Семинар 2

Нейтрон (от лат. neuter — ни тот, ни другой) — элементарная частица, не имеющая электрического заряда. Нейтрон является фермионом и принадлежит к классу барионов. Атомные ядра состоят из нейтронов и протонов.

Открытие нейтронов

Открытие нейтрона (1932) принадлежит физику Дж. Чедвику, за которое он получил Нобелевскую премию по физике в 1935 году.

В 1930 г. В. А. Амбарцумян и Д. Д. Иваненко показали, что ядро не может, как считалось в то время, состоять из протонов и электронов, что электроны, вылетающие из ядра при бета-распаде, рождаются в момент распада, и что кроме протонов, в ядре должны присутствовать некие нейтральные частицы.

В 1930 Вальтер Боте и Г. Бекер, работавшие в Германии, обнаружили, что если высокоэнергетичные альфа-частицы, испускаемыеполонием-210, попадают на некоторые лёгкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи, и результаты эксперимента не могут быть таким образом интерпретированы. Важный вклад сделали в 1932 Ирен и Фредерик Жолио-Кюри. Они показали, что если это неизвестное излучение попадает на парафин или любое другое соединение, богатое водородом, образуются протоны высоких энергий. Само по себе это ничему не противоречило, но численные результаты приводили к нестыковкам в теории. Позднее в том же 1932 году английский физик Джеймс Чедвик провёл серию экспериментов, в которых он показал, что гамма-лучевая гипотеза несостоятельна. Он предположил, что это излучение состоит из незаряженных частиц с массой, близкой к массе протона, и произвёл серию экспериментов, подтвердивших эту гипотезу. Эти незаряженные частицы были названы нейтронами от латинского корня neutral и обычного для частиц суффикса on (он). В том же 1932 г. Д. Д. Иваненко и затем В. Гейзенберг предположили, что атомное ядро состоит из протонов и нейтронов.

Свойства нейтронов.

  • Масса (примерно на 0,1378 % больше, чем масса протона; приведены рекомендованные значения CODATA 2010 года, в скобках указана погрешность величины в единицах последней значимой цифры, одно стандартное отклонение):

    • 939,565378(21) МэВ;

    • 1,00866491600(43) а. е. м.;

    • 1,674927351(74)·10−27 кг;

    • 1838,6836601(16) массы электрона.

  • Спин: 1/2 (фермион).

  • Время жизни в свободном состоянии: 885,7(8) секунды (период полураспада — 614 секунд).

  • Магнитный момент: −1,91304272(45) ядерного магнетона.

Несмотря на нулевой электрический заряд, нейтрон не является истинно нейтральной частицей. Античастицей нейтрона является антинейтрон, который не совпадает с самим нейтроном.

Изоспины нейтрона и протона одинаковы (1/2), но их проекции противоположны по знаку. Проекция изоспина нейтрона по соглашению в физике элементарных частиц принимается равной −1/2, в ядерной физике +1/2 (поскольку в большинстве ядер нейтронов больше, чем протонов, это соглашение позволяет избегать отрицательных суммарных проекций изоспина).

Нейтрон — единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие — искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных нейтронов. Измеренное гравитационное ускорение нейтронов в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел.

При огромном давлении внутри нейтронной звезды нейтроны могут деформироваться вплоть до того, что приобретают форму куба.

Электрон (от др.-греч. ἤλεκτρον — янтарь) — стабильная, отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества. Является фермионом (то есть имеет полуцелый спин). Относится к лептонам (единственная стабильная частица среди заряженных лептонов). Из электронов состоят электронные оболочки атомов, где их число и положение определяет почти все химические свойства веществ. Движение свободных электронов обусловливает такие явления, как электрический ток в проводниках и вакууме.

Открытие электрона.

В 1749 году Бенджамин Франклин высказал гипотезу, что электричество представляет собой своеобразную материальную субстанцию. Центральную роль электрической материи он отводил представлению об атомистическом строении электрического флюида. В работах Франклина впервые появляются термины: заряд, разряд, положительный заряд, отрицательный заряд, конденсатор, батарея, частицы электричества.

Иоганн Риттер в 1801 году высказал мысль о дискретной, зернистой структуре электричества.

Вильгельм Вебер в своих работах с 1846 года вводит понятие атома электричества и гипотезу, что его движением вокруг материального ядра можно объяснить тепловые и световые явления.

Майкл Фарадей ввел термин «ион» для носителей электричества в электролите и предположил, что ион обладает неизменным зарядом. Г. Гельмгольц в 1881 году показал, что концепция Фарадея должна быть согласована с уравнениями Максвелла. Джордж Стоней в 1881 году впервые рассчитал заряд одновалентного иона при электролизе, а в 1891 году, в одной из теоретических работ Стоней предложил термин «электрон» для обозначения электрического заряда одновалентного иона при электролизе.

С 1895 года Джозеф Джон Томсон в Кавендишской лаборатории Кембриджского университета начинает методическое количественное изучение отклонения катодных лучей в электрических и магнитных полях. Итоги этой работы были опубликованы в 1897 г. в октябрьском номере журнала «Philosophical Magazine». В своем опыте Томсон доказал, что все частицы, образующие катодные лучи, тождественны друг другу и входят в состав вещества. Суть опытов и гипотезу о существовании материи в состоянии ещё более тонкого дробления, чем атомы, Томсон изложил на вечернем заседании Королевского общества 29 апреля 1897 г. Извлечение из этого сообщения было опубликовано в «Electrican» 21 мая1897 г. За это открытие Томсон в 1906 году получил Нобелевскую премию по физике.

Опыт Томсона заключался в изучении пучков катодных лучей проходящих через систему параллельных металлических пластин, создававших электрическое поле и систем катушек, создававших магнитное поле. Обнаружено, что лучи отклонялись при действии отдельно обоих полей, а при определенном соотношении между ними пучки не изменяли прямой траектории. Это соотношение полей зависело от скорости частиц[1]. Проведя ряд измерений Томсон выяснил что скорость движения частиц гораздо ниже скорости света — таким образом было показано, что частицы должны обладать массой. Далее была выдвинуто предположение о наличии этих частиц в атомах и модель атома, впоследствии развитая в опытах Резерфорда.

Свойства электронов.

Открытие волновых свойств. Согласно гипотезе де Бройля (1924), электрон (как и все другие материальные микрообъекты) обладает не только корпускулярными, но и волновыми свойствами. Де-бройлевская длина волны нерелятивистского электрона равна  , где   — скорость движения электрона. В соответствии с этим электроны, подобно свету, могут испытывать интерференцию и дифракцию. Волновые свойства электронов были экспериментально обнаружены в 1927 американскими физиками К. Дэвиссоном и Л. Джермером (Опыт Дэвиссона — Джермера) и независимо английским физиком Дж. П. Томсоном.

Заряд электрона неделим и равен −1,602176565(35)·10−19 Кл (или −4,80320427(13)·10−10 ед. заряда СГСЭ в системе СГСЭ или −1,602176565(35)·10−20 ед. СГСМ в системе СГСМ); он был впервые непосредственно измерен в экспериментах (англ.)А. Ф. Иоффе (1911) и Р. Милликена (1912). Эта величина служит единицей измерения электрического заряда других элементарных частиц (в отличие от заряда электрона, элементарный заряд обычно берётся с положительным знаком). Масса электрона равна 9,10938291(40)·10−31 кг.

 кг — масса электрона.

 Кл — заряд электрона.

 Кл/кг — удельный заряд электрона.

 — спин электрона в единицах 

Согласно современным представлениям физики элементарных частиц, электрон неделим и бесструктурен (как минимум до расстояний 10−17 см). Электрон участвует в слабом,электромагнитном и гравитационном взаимодействиях. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц — его масса примерно в 1836 раз меньше массы протона. Спин электрона равен 1/2, и, таким образом, электрон относится к фермионам. Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причем магнитный момент делится на нормальную часть и аномальный магнитный момент. Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака). В этом случае отрицательно заряженный электрон называют негатроном, положительно заряженный — позитроном.

Находясь в периодическом потенциале кристалла, электрон рассматривается как квазичастица, эффективная масса которой может значительно отличаться от массы электрона.

Свободный электрон не может поглотить фотон, хотя и может рассеять его.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]