
- •Вопросы к экзамену по защите информации.
- •Реальная эффективность Экономический аспект
- •Технический аспект
- •Основные причины проблем
- •Системность при защите информации
- •Качество и его подтверждение
- •Модели разграничения доступа
- •Снифферы пакетов
- •Отказ в обслуживании (Denial of Service - DoS)
- •Парольные атаки
- •Атаки типа Man-in-the-Middle
- •Атаки на уровне приложений
- •Сетевая разведка
- •Злоупотребление доверием
- •Переадресация портов
- •Несанкционированный доступ
- •Вирусы и приложения типа "троянский конь"
- •8.3. Обеспечение целостности информации в пэвм
- •3. Разграничение доступа к элементам защищаемой информации.
- •IpSec в работе
- •Технические средства пространственного и линейного зашумления.
- •Механизм применения разрешений
- •Порядок применения разрешений
- •Владение папкой или файлом
- •Возможности применения криптографических методов в асод
- •Основные требования к криптографическому закрытию информации в асод.
- •Методы криптографического преобразования данных.
- •Усложненные замены или подстановки (таблица Вижинера)
- •Борьба со спамом и вирусами
- •Основные методы и средства защиты от атак на электронную переписку
- •«Сильные» криптоалгоритмы
- •Защита корпоративной почтовой системы
- •Государственная система защиты информации
- •Лицензирование
- •Сертификация средств защиты и аттестование объектов информатизации
- •Аттестация
- •Основные цели планирования
- •4.1.2. Отечественная нормативно-правовая база, под действие которой подпадают ас различного назначения
- •6.2.1.2. Свойства нечетких множеств.
- •6.2.1.3 Операции над нечеткими множествами.
- •6.2.2. Нечеткие отношения
- •Оранжевая книга Национального центра защиты компьютеров сша (tcsec)
- •1. Концепция безопасности системы защиты
- •2. Гарантированность системы защиты
- •Гармонизированные критерии Европейских стран (itsec)
- •Концепция защиты от нсд Госкомиссии при Президенте рф
- •Рекомендации х.800
- •Действие 1. С чего начинать?
- •Установить перечень персональных данных, обрабатываемых на предприятии
- •Способы обработки персональных данных?
- •Определить состав и объем обрабатываемых персональных данных?
- •Провести предварительную классификацию информационных систем пДн
- •Полученные результаты и способы защиты персональных данных
- •Действие 2. Подача уведомления в уполномоченный орган Обработка персональных данных без уведомления.
- •Подача уведомления в Роскомнадзор.
- •Действие 3. Организационные меры защиты персональных данных
- •Действие 4. Техническая защита персональных данных
- •Действие 5. Выбор исполнителя
- •Выполнение работ своими силами
- •Привлечение специализированной организации
- •Асимметричные алгоритмы
8.3. Обеспечение целостности информации в пэвм
Актуальность данного вида защиты информации в ПЭВМ носит всеобщий характер независимо от того, какая информация обрабатывается, поэтому знания и навыки обеспечения целостности необходимы всем пользователям ПЭВМ.
Прежде всего следует знать и помнить, что угрозы целостности информации в ПЭВМ, как и в любой другой автоматизированной системе, могут быть случайными и преднамеренными. Происхождение, сущность и общее содержание названных разновидностей угроз были рассмотрены в гл. 3. Основными разновидностями случайных угроз являются отказы, сбои, ошибки, стихийные бедствия и побочные явления, а конкретными источниками их проявления - технические средства, программы и пользователи. С учетом современного состояния технических и программных средств ПЭВМ, а также способов и средств их использования к наиболее реальным угрозам целостности информации случайного характера следует отнести ошибки пользователей. Основными из этих ошибок являются неправильные обращения к серийным компонентам программного обеспечения.
Гораздо большую опасность целостности информации в ПЭВМ представляют преднамеренные угрозы, создаваемые людьми в злоумышленных целях. Такая угроза может быть непосредственной, если злоумышленник получает доступ к ПЭВМ, и опосредованной, когда угроза создается с помощью промежуточного носителя, чаще всего с помощью дискеты. Из преднамеренных угроз наибольшее распространение получили так называемые разрушающие программные средства (РПС): электронные вирусы, черви, троянские кони и др. Они же представляют и наибольшую опасность целостности информации в ПЭВМ.
Защита ПЭВМ от несанкционированного доступа
Как показывает практика, несанкционированный доступ (НСД) представляет одну из наиболее серьезных угроз для злоумышленного завладения защищаемой информацией в современных АСОД. Как ни покажется странным, но для ПЭВМ опасность данной угрозы по сравнению с большими ЭВМ повышается, чему способствуют следующие объективно существующие обстоятельства:
подавляющая часть ПЭВМ располагается непосредственно в ра бочих комнатах специалистов, что создает благоприятные условия для доступа к ним посторонних лиц;
многие ПЭВМ служат коллективным средством обработки ин формации, что обезличивает ответственность, в том числе и за защиту информации;
современные ПЭВМ оснащены несъемными накопителями на ЖМД очень большой емкости, причем информация на них сохраняется даже в обесточенном состоянии;
накопители на ГМД производятся в таком массовом количестве, что уже используются для распространения информации так же, как и бумажные носители;
5) первоначально ПЭВМ создавались именно как персональное средство автоматизации обработки информации, а потому и не оснаща лись специально средствами защиты от НСД.
В силу сказанного те пользователи, которые желают сохранить конфиденциальность своей информации, должны особенно позаботиться об оснащении используемой ПЭВМ высокоэффективными средствами защиты от НСД.
На основе анализа, изложенного в гл. 6 и гл. 7, основные механизмы защиты ПЭВМ от НСД могут быть представлены следующим перечнем:
физическая защита ПЭВМ и носителей информации;
опознавание (аутентификация) пользователей и используемых компонентов обработки информации;
разграничение доступа к элементам защищаемой информации;
криптографическое закрытие защищаемой информации, храни мой на носителях (архивация данных);
криптографическое закрытие защищаемой информации в процес се непосредственной ее обработки;
регистрация всех обращений к защищаемой информации.
Ниже излагаются общее содержание и способы использования перечисленных механизмов.
Физическая защипа ПЭВМ и носителей информации. Содержание физической защиты общеизвестно, поэтому детально обсуждать ее здесь нет необходимости. Заметим только, что ПЭВМ лучше размещать в на дежно запираемом помещении, причем в рабочее время помещение долж но быть закрыто или ПЭВМ должна быть под наблюдением законного пользователя. При обработке же закрытой информации в помещении мо гут находиться только лица, допущенные к обрабатываемой информа ции. В целях повышения надежности физической защиты в нерабочее время ПЭВМ следует хранить в опечатанном сейфе.
Опознавание (аутентификация) пользователей и используемых компонентов обработки информации. В концептуальном плане решение данной задачи принципиально не отличается от аналогичной задачи, ре шаемой в любой АСОД: система защиты должна надежно определять за конность каждого обращения к ресурсам, а законный пользователь дол жен иметь возможность убедиться, что ему предоставляются именно те компоненты (аппаратура, программы, массивы данных), которые ему не обходимы.
Для опознавания пользователей к настоящему времени разработаны и нашли практическое применение следующие способы:
с использованием простого пароля;
в диалоговом режиме с использованием нескольких паролей и/или персональной информации пользователей;
3)по индивидуальным особенностям и физиологическим характеристикам человека (отпечатки пальцев, геометрия руки, голос, персональная роспись, структура сетчатки глаза, фотография и некоторые другие);
с использованием радиокодовых устройств;
с использованием электронных карточек.
Рассмотрим коротко перечисленные способы.
Распознавание по простому паролю заключается в том, что каждому зарегистрированному пользователю выдается персональный пароль, который он должен держать в тайне и вводить в ЗУ ЭВМ при каждом обращении к ней . Специальная программа сравнивает введенный пароль с эталоном, хранящимся в ЗУ ЭВМ, и при совпадении паролей запрос пользователя принимается к исполнению. Простота способа очевидна, но очевидны и явные недостатки: пароль может быть утерян или подобран перебором возможных комбинаций, а искусный злоумышленник может проникнуть в ту область ЗУ, в которой хранятся эталонные пароли. Попытки преодолеть указанные недостатки, естественно, ведут к усложнению способа.
Опознавание в диалоговом режиме может быть осуществлено по следующей схеме. В файлах механизмов защиты заблаговременно создаются записи, содержащие персонифицирующие пользователя данные (дата рождения, рост, вес, имена и даты рождения родных и близких и т.п.) или достаточно большой и упорядоченный набор паролей. При обращении пользователя программа механизма защиты предлагает пользователю назвать некоторые данные из имеющейся записи, которые сравниваются с хранящимися в файле. По результатам сравнения принимается решение о допуске. Для повышения надежности опознавания запрашиваемые у пользователя данные могут выбираться каждый раз разные. Достоинства и недостатки данного способа очевидны.
Опознавание по индивидуальным, особенностям и физиологическим характеристикам может быть весьма надежным, но для его реализации необходима специальная аппаратура для съема и ввода соответствующих параметров и достаточно сложные программы их обработки и сравнения с эталоном. Все это в настоящее время вполне разрешимо, однако сопряжено с удорожанием и усложнением аппаратуры и программ ПЭВМ. В силу сказанного данный способ применительно к ПЭВМ пока не получил сколько-нибудь значительного распространения. Заманчивым по сравнительной простоте и доступности может оказаться опознавание пользователя по параметрам его работы с клавиатурой ПЭВМ (скорость набора текста, интервалы между нажатием клавиш и др.), которые тоже носят сугубо индивидуальный характер.
Опознавание по радиокодовым устройствам, как это следует из самого названия, заключается в том, что изготавливаются специальные устройства, каждое из которых может генерировать радиосигналы, имеющие индивидуальные характеристики. ПЭВМ оснащается программно-аппаратными средствами приема (например, при приближении устройства к экрану дисплея), регистрации и обработки генерируемых сигналов. Каждому зарегистрированному пользователю выдается такое устройство, а его параметры заносятся в ЗУ механизмов защиты. Надежность опознавания по данному способу может быть высокой, однако такие устройства персонифицируют владельца, а не персону, поэтому похищение устройства дает злоумышленнику реальные шансы несанкционированного доступа.
Опознавание по специальным идентификационным карточкам заключается в том, что изготавливаются специальные карточки, на которые наносятся данные, персонифицирующие пользователя: персональный идентификационный номер, специальный шифр или код и т.п. Эти данные на карточку заносятся в зашифрованном виде, причем ключ шифрования может быть дополнительным идентифицирующим параметром, поскольку он может быть известен только пользователю, вводится им каждый раз при обращении к системе и уничтожается сразу же после использования. Опознавание по карточкам может быть очень надежным, однако для его реализации необходимы предприятия - изготовители карточек, а ПЭВМ должна быть оснащена устройством считывания данных с карточки. Поскольку все это сопряжено со значительными дополнительными расходами, то данный способ опознавания оказывается эффективным при его использовании в больших территориально распределенных сетях, где он в последнее время находит все большее применение, причем особенно в автоматизированных банковских системах. Более детально он будет рассмотрен в § 8.7.
Для опознавания компонентов обработки данных, т.е. ЭВМ, ОС, программ функциональной обработки, массивов данных (такое опознавание особенно актуально при работе в сети ЭВМ) используются следующие средства:
1) специальные аппаратные блоки-приставки (для опознавания ЭВМ, терминалов, внешних устройств);
специальные программы, реализующие процедуру "запрос-ответ";
контрольные суммы (для опознавания программ и массивов дан ных).
Опознавание 'с помощью блоков-приставок заключается в том, что технические средства оснащаются специальными устройствами, генерирующими индивидуальные сигналы. В целях предупреждения перехвата этих сигналов и последующего их злоумышленного использования они могут передаваться в зашифрованном виде, причем периодически может меняться не только ключ шифрования, но и используемый способ (алгоритм) криптографического преобразования.
Программное опознавание по процедуре "запрос-ответ " заключается в том, что в ЗУ опознающего и опознаваемого объектов заблаговременно вносятся достаточно развитые массивы идентифицируемых данных. Тогда опознающий объект в диалоговом режиме запрашивает те или иные данные из массива опознаваемого объекта и сравнивает их с соответствующими данными своего массива. Опять-таки в целях предупреждения перехвата и злоумышленного использования передаваемых идентифицирующих данных может осуществляться их криптографическое закрытие.
Опознавание по контрольной сумме заключается в том, что для программ и массивов данных заблаговременно вычисляются их контрольные суммы (или другие величины, зависящие от содержания опознаваемых объектов). Дальнейшая процедура опознавания очевидна.