Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Optika_2.doc
Скачиваний:
15
Добавлен:
29.08.2019
Размер:
2.85 Mб
Скачать

3S, 3p, 3d и т.Д. Схему уровней энергии удобно изображать так, как показано на рис.

Испускание и поглощение света происходит при переходах электрона с одного уровня на другой. В квантовой механике доказывается, что для орбитального квантового числа имеется правило отбора

. (23) Это означает, что возможны только такие переходы, при которых l меняется на единицу. Правило обусловлено тем, что фотон обладает собственным моментом импульса (спином s). Его величина вычисляется по общему правилу (20), где вместо l следует использовать . Данное значение определяет максимальную величину проекции спина на избранное направление. Испускание или поглощение фотона, согласно закону сохранения момента импульса, приводит к изменению момента импульса атома, согласно с правилом (23).

На рис. показаны переходы, разрешенные правилом (23). Серии Лаймана соответствует переходам

; серии Бальмера соответствуют переходы

и , и т.д.

Решение уравнения Шредингера для атома водорода дает, что волновая функция электрона в 1s состоянии является сферически-симметричной и имеет вид

, где есть боровский радиус. Вероятность нахождения электрона в шаровом слое радиуса r и толщиной dr равна

. Подставив в формулу волновую функцию, получим

.

График радиальной плотности вероятности изображен на рис. Ее максимум приходится на . Таким образом, в основном состоянии атома водорода наиболее вероятное расстояние между ядром и электроном равно боровскому радиусу.

Спин электрона. Спиновое квантовое число. При классическом движении по орбите электрон обладает магнитным моментом. Причем классическое отношение магнитного момента к механическому имеет значение

, (1) где и – соответственно магнитный и механический момент. К аналогичному результату приводит и квантовая механика. Так как проекция орбитального момента на некоторое направление может принимать только дискретные значения, то это же относится и к магнитному моменту. Поэтому, проекция магнитного момента на направление вектора B при заданном значении орбитального квантового числа l может принимать значения

, где – так называемый магнетон Бора.

О. Штерн и В. Герлах в своих опытах проводили прямые измерения магнитных моментов. Они обнаружили, что узкий пучок атомов водорода, заведомо находящихся в s-состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса, а с ним и магнитный момент электрона равен нулю. Таким образом, магнитное поле не должно оказывать влияние на движение атомов водорода, т.е. расщепления быть не должно.

Для объяснения этого и других явлений Гаудсмит и Уленбек выдвинули предпо­ложение, что электрон обладает собственным моментом импульса , не связанным с движением электрона в пространстве. Этот собственный момент был назван спином.

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Согласно этим представлениям для отношения магнитного и механического моментов должно выполняться соотношение (1). Экспериментально было установлено, что это отношение в действительности в два раза больше, чем для орбитальных моментов

. По этой причине, представление электрона как о вращающемся шарике оказывается несостоятельным. В квантовой механике спин электрона (и всех других микрочастиц) рассматривается как внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.

Величина собственного момента импульса микрочастицы определяется в квантовой механике с помощью спинового квантового числа s (для электрона )

. Проекция спина на заданное направление может принимать квантованные значения, отличающиеся друг от друга на . Для электрона

, где магнитное спиновое квантовое число.

Для полного описания электрона в атоме, таким образом, необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще магнитное спиновое квантовое число.

Тождественность частиц. В классической механике одинаковые частицы (скажем, электроны), несмотря на тождественность их физических свойств, можно пометить, пронумеровав, и в этом смысле считать частицы различимыми. В квантовой механике ситуация кардинально меняется. Понятие траектории теряет смысл, и, следовательно, при движении частицы перепутываются. Это означает, что нельзя сказать, какой из первоначально помеченных электронов попал в ту или иную точку.

Таким образом, в квантовой механике одинаковые частицы полностью теряют свою индивидуальность и становятся неразличимыми. Это утверждение или, как говорят, принцип неразличимости одинаковых частиц имеет важные следствия.

Рассмотрим систему, состоящую из двух одинаковых частиц. В силу их тождественности состояния системы, получающиеся друг из друга перестановкой обеих частиц должны быть физически полностью эквивалентными. На языке квантовой механики это означает, что

, где , – совокупности пространственных и спиновых координат первой и второй частицы. В итоге возможны два случая

. Таким образом, волновая функция либо симметрична (не меняется при перестановки частиц), либо антисимметрична (т.е. при перестановке меняет знак). Оба этих случая встречаются в природе.

Релятивистская квантовая механика устанавливает, что симметрия или антисимметрия волновых функций определяется спином частиц. Частицы с полуцелым спином (электроны, протоны, нейтроны) описываются антисимметричными волновыми функциями. Такие частицы называют фермионами, и говорят, что они подчиняются статистике Ферми-Дирака. Частицы с нулевым или целочисленным спином (например, фотоны) описываются симметричными волновыми функциями. Эти частицы называют бозонами, и говорят, что они подчиняются статистике Бозе-Эйнштейна. Сложные частицы (например, атомные ядра), состоящие из нечетного числа фермионов, являются фермионами (суммарный спин – полуцелый), а из четного – бозонами (суммарный спин целый).

Принцип Паули. Атомные оболочки. Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два фермиона, входящих в эту систему, не могут находиться в одинаковых состояниях, так как для фермионов волновая функция должна быть антисимметричной.

Из этого положения вытекает принцип запрета Паули: любые два фермиона не могут одновременно находиться в одном и том же состоянии.

Состояние электрона в атоме определяется набором четырех квантовых чисел:

главного n ( ,

орбитального l ( ),

магнитного ( ),

магнитного спинового ( ).

Распределение электронов в атоме по состояниям подчиняется принципу Паули, поэтому два электрона, находящихся атоме, различаются значениями, по крайней мере, одного квантового числа.

Определенному значению n соответствует различных состояний, отличающихся l и . Так как может принимать лишь два значения ( ), то максимальное число электронов, находящихся в состояниях с данным n, будет равно . Совокупность электронов в многоэлектронном атоме, имеющих одно и то же квантовое число n, называют электронной оболочкой. В каждой электроны распределяются по подоболочкам, соответствующих данному l. Максимальное число электронов в подоболочке с данным l равно . Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам представлены в таблице.

Периодическая система элементов Менделеева. С помощью принципа Паули можно объяснить Периодическую систему элементов. Химические и некоторые физические свойства элементов определяются внешними валентными электронами. Поэтому периодичность свойств химических элементов непосредственно связана с характером заполнения электронных оболочек в атоме.

Элементы таблице отличаются друг от друга зарядом ядра и количеством электронов. При переходе к соседнему элементу последние увеличиваются на единицу. Электроны заполняют уровни так, чтобы энергия атома была минимальной.

В многоэлектронном атоме каждый отдельный электрон движется в поле, которое отличается от кулоновского. Это приводит к тому, что вырождение по орбитальному моменту снимается . Причем c увеличением l энергия уровней с одинаковыми n возрастает. Когда число электронов невелико, отличие в энергии с различными l и одинаковыми n не так велико, как между состояниями с различными n. Поэтому, сначала электроны заполняют оболочки с меньшими n, начиная с s подоболочки, последовательно переходя к большим значениям l.

Единственный электрон атома водорода находится в состоянии 1s. Оба электрона атома He находятся в состоянии 1s с антипараллельными ориентациями спина. На атоме гелия заканчивается заполнение K-оболочки, что соответствует завершению I периода таблицы Менделеева.

Третий электрон атома Li (Z3) занимает наинизшее свободное энергетическое состояние с n2 (L-оболочка), т.е. 2s-состояние. Так как он слабее других электронов связан с ядром атома, то им определяются оптические и химические свойства атома. Процесс заполнения электронов во втором периоде не нарушается. Заканчивается период неоном, у которого L-оболочка целиком заполнена.

В третьем периоде начинается заполнение M-оболочки. Одиннадцатый электрон первого элемента данного периода Na (Z11) занимает наинизшее свободное состояние 3s. 3s-электрон является единственным валентным электроном. В связи с этим оптические и химические свойства натрия подобны свойствам лития. У следующих за натрием элементов нормально заполняются подоболочки 3s и 3p.

Впервые нарушение обычной последовательности заполнения уровней происходит у K (Z19). Его девятнадцатый электрон должен был бы занять 3d-состояние в M-оболочке. При данной общей конфигурации подоболочка 4s оказывается энергетически ниже подоболочки 3d. В связи с чем, при незавершенном в целом заполнении оболочки M начинается заполнение оболочки N. В оптическом и химическом отношении атом K подобен атомам Li и Na. Все эти элементы имеют валентный электрон в s-состоянии.

С аналогичными отступлениями от обычной последовательности, повторяющимися время от времени, осуществляется застройка электронных уровней всех атомов. При этом периодически повторяются сходные конфигурации внешних (валентных) электронов (например, 1s, 2s, 3s и т.д.), чем обуславливается повторяемость химических и оптических свойств атомов.

Рентгеновские спектры. Самым распространенным источником рентгеновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод. При торможении электронов возникает рентгеновское излучение. Спектральный состав рентгеновского излучения представляет собой наложение сплошного спектра, ограниченного со стороны коротких волн граничной длиной , и линейчатого спектра – совокупности отдельных линий на фоне сплошного спектра.

Сплошной спектр обусловлен излучением электронов при их торможении. Поэтому его называют тормозным излучением. Максимальная энергия кванта тормозного излучения соответствует случаю, когда вся кинетическая энергия электрона переходит в энергию рентгеновского фотона, т.е.

, где U – ускоряющая разность потенциалов рентгеновской трубки. Отсюда граничная длина волны . (2) Измерив коротковолновую границу тормозного излучения, можно определить постоян­ную Планка. Из всех методов определения данный метод считается самым точным.

При достаточно большой энергии электронов на фоне сплошного спектра появ­ляются отдельные резкие линии. Линейчатый спектр определяется только материалом анода, поэтому данное излучение называется характеристическим излучением.

Характеристические спектры отличается заметной простотой. Они состоят из нескольких серий, обозначаемых буквами K, L, M, N и O. Каждая серия насчитывает небольшое число линий, обозначаемых в порядке возрастания частоты индексами , , … ( , , , …; , , , … и т.д.). Спектры разных элементов имеют сходный характер. При увеличении атомного номера Z весь рентгеновский спектр целиком смещается в коротковолновую часть, не меняя своей структуры (рис.). Это объясняется тем, что рентгеновские спектры возникают при переходах внутренних электронов, которые для разных атомов являются сходными.

Схема возникновения рентгеновских спектров дана на рис. Возбуждение атома состоит в удалении одного из внутренних электронов. Если вырывается один из двух электронов K-слоя, то освободившееся место может быть занято электроном из какого-либо внешнего слоя (L, M, N и т.д.). При этом возникает K-серия. Аналогично возникают и другие серии, наблюдаемые, впрочем, только для тяжелых элементов. Серия K обязательно сопровождается остальными сериями, так как при испускании ее линий освобождаются уровни в слоях L, M и т.д., которые будут в свою очередь заполнятся электронами из более высоких слоев.

Исследуя рентгеновские спектры элементов, Г. Мозли установил соотношение, называемое законом Мозли

, (3) где – частота линии характеристического рентгеновского излучения, R – постоянная Ридберга, (определяет рентгеновскую серию), (определяет линию соответствующей серии), – постоянная экранирования.

Закон Мозли позволяет по измеренной длине волны рентгеновских линий точно установить атомный номер данного элемента; этот закон сыграл большую роль при размещении элементов в периодической таблице.

Закону Мозли можно дать простое объяснение. Линии с частотами (3), возникают при переходе электрона, находящегося в поле заряда , с уровня с номером n на уровень с номером m. Постоянная экранирования возникает из-за экранирования ядра Ze другими электронами. Ее значение зависит от линии. Например, для -линии и закон Мозли запишется в виде

.

Связь в молекулах. Молекулярные спектры. Различают два вида связи между атомами в молекуле: ионную и ковалентную связь.

Ионная связь. Если два нейтральных атома постепенно сближать друг с другом, то в случае ионной связи наступает момент, когда внешний электрон одного из атомов предпочитает присоединиться к другому атому. Атом, потерявший электрон, ведет себя как частица с положительным зарядом e, а атом, приобретший лишний электрон, – как частица с отрицательным зарядом e. Примером молекулы с ионной связью может служить HCl, LiF, и др.

Ковалентная связь. Другим распространенным типом молекулярной связи является ковалентная связь (например, в молекулах H2, O2, CO). В образовании ковалентной связи участвуют два валентных электрона соседних атома с противоположно направленными спинами. В результате специфического квантового движения электронов между атомами образуется электронное облако, которое обуславливает притяжение атомов.

Молекулярные спектры сложнее атомных спектров, так как кроме движения электронов относительно ядер в молекуле происходят колебательные движения ядер (вместе с окружающими их внутренними электронами) около положений равновесия и вращательные движения молекул.

Молекулярные спектры возникают в результате квантовых переходов между уровнями энергий и молекул согласно соотношению

, где – энергия испущенного или поглощаемого кванта частоты . При комбинационном рассеянии света равна разности энергий падающего и рассеянного фотона.

Электронному, колебательному и вращательному движениям молекул соответствуют энергии , и . Полная энергия молекулы E может быть представлена в виде суммы этих энергий

, причем по порядку величины , где m – масса электрона, M – масса молекулы ( ). Следовательно . Энергия эВ, эВ, эВ.

Согласно законам квантовой механики, эти энергии принимают только квантованные значения. Схема энергетических уровней двухатомной молекулы представлена на рис. (для примера рассмотрены только два электронных уровня –показаны жирными линиями). Электронные уровни энергии далеко отстоят друг от друга. Колебательные уровни расположены значительно ближе друг к другу, а вращательные уровни энергии располагаются еще ближе друг к другу.

Типичные молекулярные спектры – полосатые, в виде совокупности полос различной ширины в УФ, видимой и ИК области спектра.

Спонтанное и вынужденное излучение. Коэффициенты Эйнштейна. Излучение в полости представляет собой совокупность квантов с энергией . Кванты могут поглощаться атомами, которые при этом переходят на более высокий энергетический уровень с энергией , где – исходный энергетический уровень атома. При переходе атома с уровня на излучается квант с энергией . Обозначим эти уровни индексами 0 и 1 (рис.) и назовем соответственно нижним и верхним уровнем.

Между материальными телами (стенками полости) и излучением происходит постоянный обмен энергией. Динамическое равновесие между ними наступает, когда обмен квантами уравновешен для каждой частоты. Поэтому ниже рассмотрена лишь одна частота. Для других частот все рассуждения аналогичны.

С нижнего уровня на верхний переходы возможны только с поглощением кванта энергии, т.е. под влиянием падающего излучения. Такие переходы называются вынужденными. Переходы с верхнего на нижний уровень могут быть как вынужденными, под влиянием падающего на атом излучения, так и спонтанными, происходящими независимо от падающего на атом излучения.

Обозначим вероятность спонтанного перехода 10 в секунду, – концентрацию атомов на верхнем уровне. Тогда частота спонтанных переходов

. Частота вынужденных переходов пропорциональна числу падающих фотонов или спектральной плотности излучения . Обозначим и вероятности вынужденных переходов 10 и 01 в секунду под действием излучения с ; – концентрацию атомов на нижнем уровне. Тогда для частоты вынужденных переходов можно записать

, .

Условие динамического равновесия имеет вид или

. (1) В равновесном состоянии выполняется распределение Больцмана, которое для концентраций атомов имеет вид

, , (2) где A – нормировочная постоянная. Подставляя (2) в (1), находим

. (3) Величины , и называются коэффициентами Эйнштейна.

Из физических соображений следует, что при должно быть . Тогда из предельного перехода в (3) следует, что

. (4) Поэтому соотношение (3) может быть записано в виде

, (5) где . Значение можно найти, если учесть, что (5) при малых частотах должно совпадать с формулой Рэлея-Джинса. При и (5) приобретает вид

. Сравнивая полученное выражение с формулой Рэлея-Джинса, находим

. В результате формула (5) приобретает вид

. (6) Соотношение (6) представляет собой формулу Планка.

Спонтанное излучение имеет случайное направление распространения, случайную поляризацию и случайную фазу. Вынужденное излучение в этом отношении отличается от спонтанного. Направление распространения вынужденного излучения в точности совпадает с направлением вынуждающего излучения. То же самое относится к частоте, фазе и поляризации вынужденного и вынуждающего излучения. Следовательно, вынужденное и вынуждающее излучение оказываются строго когерентными. Эта особенность вынужденного излучения лежит в основе действия усилителей и генераторов света, называемых лазерами.

Лазеры. При прохождении света через среду осуществляется обмен квантами между пучком света и атомами среды посредством вынужденных переходов и спонтанное испускание квантов. Обозначим частоту излучения, концентрацию атомов на нижнем и верхнем уровнях соответственно , и (рис.). Объемную спектральную плотность излучения частоты обозначим . Она изменяется в результате вынужденного поглощения квантов атомами среды, благодаря чему плотность потока уменьшается, и вследствие вынужденного излучения атомов, приводящего к увеличению плотности . Закон сохранения энергии при вынужденных переходах запишется в виде

, (7) где . С помощью обозначений для коэффициента , где v – скорость света с частотой в среде, и плотности потока энергии уравнение (7) может быть записано в виде

.

В состоянии термодинамического равновесия концентрация атомов описывается распределением Больцмана. Из него следует, что при и поэтому . Это означает, что плотность потока по мере прохождения света в среде уменьшается. Механизм уменьшения плотности состоит в следующем. В результате вынужденных переходов атомов с нижнего энергетического уровня на верхний плотность энергии потока уменьшается.

Если привести систему атомов в неравновесное состояние и тем самым нарушить распределение Больцмана, так чтобы образовалась инверсная заселенность уровней , то коэффициент станет больше нуля . В этом случае пучок при прохождении усиливается, т.е. среда действует как усилитель светового потока.

Это позволяет создать генераторы и усилители волн, основанные на индуцированном излучении. Для светового диапазона подобные генераторы называются лазерами, а для микроволнового – мазерами.

С помощью светового пучка нельзя добиться инверсной заселенности уровней, для которых , где – частота света. Инверсную заселенность уровней можно создать с помощью некоторого воздействия, независимого от усиливаемого света. Создание инверсной заселенности называется накачкой. Наиболее простой метод накачки осуществляется в трехуровневых системах (рис.). На рис. изображено распределение заселенности в равновесном состоянии системы. При воздействии на систему вспомогательным излучением большой мощности с частотой заселенности уровней и практически сравниваются. Допустим, что время жизни атомов на уровне очень мало и они спонтанно переходят на уровень , время жизни на котором у них достаточно велико. Ясно, что атомы на уровне будут накапливаться, в результате чего создается инверсная заселенность между уровнями и (рис.). Переход между этими уровнями может быть использован для усиления света с частотой .

Накачка лазеров может быть самой разнообразной, не только с помощью света. По характеру зависимости накачки от времени она может быть непрерывной и импульсной. Если накачка осуществляется импульсами, то и излучение лазера импульсное. При непрерывной накачке, при выполнении условия генерации, излучение лазера непрерывно (при непрерывной накачке возможен также и импульсный режим излучения).

Рубиновый лазер. Первым квантовым генератором света был рубиновый лазер, созданный в 1960 г. Рабочим веществом является рубин, представляющий собой кристалл оксида алюминия Al2O3 (корунд), в котором при выращивании введен в виде примеси оксид хрома Cr2O3. В решетке кристалла Al2O3 ион Cr+3 замещает ион Al+3. Вследствие расщепления соответствующих энергетических уровней хрома в кристалле возникают две энергетические полосы: одна – в зеленой, другая – в голубой части спектра. Поглощение в этих частях спектра обуславливает красный цвет рубина. Наряду с голубой и зеленой полосами поглощения имеется два узких энергетических уровня и , при переходе с которых на основной уровень излучается свет с длинами волн 694,3 и 692.8 нм.

Рассмотрим работу рубинового лазера в режиме излучения света с   694,3 нм. При облучении рубина белым светом голубая и зеленая части спектра поглощаются, а красная отражается. В рубиновом лазере используется оптическая накачка ксеноновой лампой, которая дает вспышки света большой интенсивности при прохождении через нее импульса тока, нагревающего газ до нескольких тысяч кельвин. Непрерывная накачка невозможна, потому что лампа при столь высокой температуре не выдерживает непрерывного режима работы. Излучение поглощается ионами Cr+3, переходящими в результате этого на энергетические уровни в области полос поглощения. Однако с этих уровней ионы Cr+3 очень быстро переходят на уровни , . При этом излишек энергии передается решетке. Уровни и метастабильны. Поэтому в процессе импульса накачки на этих уровнях накапливаются возбужденные атомы, создавая инверсную заселенность относительно уровня .

Кристалл рубина выращивается в виде круглого стержня диаметром несколько миллиметров и длиной несколько сантиметров с плоскими торцами, тщательно полированными и строго перпендикулярными оси цилиндра. Один из торцов покрывают плотным слоем серебра, имеющего высокий коэффициент отражения. Другой торец рубинового стержня покрывают полупрозрачным слоем того же серебра. В результате образуется оптический резонатор. Если он настроен на   694,3 нм, то при накачке лазера происходит генерация излучения с этой длиной волны.

Рубиновый лазер может давать линейно-поляризованное излучение без помощи какого-либо поляризатора. Если рубиновый стержень лазера вырезан из кристалла рубина таким образом, что оптическая ось кристалла перпендикулярна к оси стержня или составляет с ней угол 60, то излучение будет линейно-поляризовано.

Гелий-неоновый лазер. Активной средой является газообразная смесь гелия и неона. Генерация осуществляется за счет переходов между энергетическими уровнями неона, а гелий играет роль посредника, через который энергия передается атомам неона для создания инверсной заселенности.

На рис. приведена упрощенная схема уровней неона (справа). Излучению с длинами волн 632,8, 1150 и 3390 нм соответствуют переходы , , . Помимо этих переходов возможны переходы на другие уровни, не указанных на рис. Интерес представляет переход, соответствующий видимой части спектра (632,8 нм).

При пропускании тока через гелий-неоновую смесь электронным ударом атомы гелия возбуждаются до состояния с энергией , которое является метастабильным, поскольку переход в основное состояние из них запрещен правилами отбора. При прохождении тока атомы накапливаются на этом уровне. Когда возбужденный атом гелия сталкивается с невозбужденным атомом неона, энергия возбуждения переходит к последнему. Этот переход осуществляется очень эффективно из-за близкого совпадения энергий соответствующих уровней. Вследствие этого на уровне образуется инверсная заселенность относительно уровня . Это обстоятельство может быть использовано для генерации лазерного излучения.

Гелий-неоновый лазер может работать в непрерывном режиме. Типичная схема лазера показана на рис. Концы лазерной трубки закрыты прозрачным материалом так, чтобы осевое излучение падало на него под углом Брюстера. Благодаря этому обеспечивается полное пропускание одной из поляризаций света и устранение из пучка другой. Таким образом, излучение гелий-неонового лазера линейно поляризовано. Одно из зеркал имеет коэффициент отражения порядка 0,999, а второе, через которое проходит лазерное излучение, – около 0,990. В качестве зеркал используют многослойные диэлектрики, поскольку более низкие коэффициенты отражения не обеспечивают достижения порога генерации.

Лазеры на красителях. Красители являются сложными молекулами, у которых сильно выражены колебательные уровни энергии. Энергетические уровни располагаются в полосе спектра почти непрерывно. Вследствие внутримолекулярного взаимодействия молекула очень быстро переходит безызлучательно на нижний энергетический уровень каждой полосы. Поэтому после возбуждения молекул через очень короткий промежуток времени на нижнем уровне полосы сосредоточатся все возбужденные молекулы. Они далее имеют возможность совершить излучательный переход на любой из энергетических уровней нижней полосы. Таким образом, возможно излучение практически любой частоты в интервале, соответствующем ширине нулевой полосы. Если молекулы красителя взять в качестве активного вещества, то в зависимости от настройки резонатора можно получить практически непрерывную перестройку частоты лазера. Накачка лазеров на красителях производится газоразрядными лампами или излучением других лазеров.