- •1 Методологические основы моделирования сложных систем
- •1.1 Системность
- •Понятия общей теории систем
- •Определение понятия системы
- •Основные свойства, обязательные для любой системы.
- •Взаимодействие и взаимозависимость системы и внешней среды.
- •Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- •Внешняя среда
- •Функции системы
- •Сложность систем
- •Системный подход
- •Классификация систем
- •Развитие искусственной системы и ее жизненный цикл
- •1.2 Моделирование
- •Общая методология моделирования
- •Основные принципы моделирования:
- •Процесс моделирования
- •Анализ и синтез в моделировании
- •Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- •Состав и структура космической системы наблюдения Земли
- •2 Построение математических моделей
- •2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- •Цели математического моделирования
- •2.2 Общие методы построения математической модели
- •Микроподход и макроподход в исследованиях системы.
- •Формальная запись модели системы
- •Понятие вариационных принципов
- •Модульное построение моделей
- •2.3 Требования к построению модели
- •Адекватность и достоверность модели
- •Равнозначимость внешнего и внутреннего правдоподобия
- •Анализ чувствительности модели
- •Пример анализа на чувствительность экономической задачи
- •3 Математические модели состояния и структуры системы
- •3.1 Модель состояния системы Состояние системы и ее функционирование
- •Формализация процесса функционирования системы
- •3.2 Модель структуры системы Основные понятия структуры системы
- •Модель состава и структуры системы
- •Методология моделирования структуры системы
- •Виды структур
- •Формирование структуры модели с позиций структурного моделирования.
- •Построение структурных моделей
- •3.3 Модель процесса функционирования
- •Установление функциональных зависимостей
- •Неопределенность функционирования системы
- •Пути уменьшения неопределенностей
- •Основные требования к модели процесса функционирования
- •Анализ функционирования, анализ структуры технической системы
- •Функционально – физический анализ технических объектов.
- •Пример разработки моделей деятельности организации
- •Пример функционально – физического анализа технических объектов
- •Конструкция бытовой электроплитки
- •Функционально стоимостной анализ.
- •4 Этапы построения моделей
- •4.1 Постановка задачи моделирования
- •Разработка содержательной модели
- •Разработка концептуальной модели
- •Описание внешних воздействий
- •Декомпозиция системы
- •Подготовка исходных данных для математической модели
- •Содержание концептуальной модели
- •4.2 Разработка математической модели
- •Разработка функциональных соотношений
- •Выбор метода решения задачи
- •Проверка и корректировка модели
- •Анализ чувствительности модели
- •Проверка адекватности модели
- •Контроль модели
- •Корректировка модели
- •Уточнение модели проектируемого объекта
- •Реализация математической модели в виде программ для эвм
- •4.3 Практическое использование построенной модели и анализ результатов моделирования
- •Примеры построения моделей Математическая реставрация Тунгусского феномена
- •1. Сбор информации о явлении, выдвижение гипотез.
- •2. Содержательная постановка задачи исследования явления.
- •3. Математическая постановка задачи.
- •4. Анализ результатов.
- •5. Проверка адекватности модели – сравнение с натурным экспериментом.
- •6. Анализ результатов.
- •Прогноз климатических изменений
- •1. Содержательная постановка задачи
- •2. Концептуальная постановка. Построение математической модели.
- •3. Проведение вычислительного эксперимента.
- •4. Анализ результатов вычислительного эксперимента.
- •5 Виды математических моделей
- •5.1 Классификация математических моделей
- •Пример представления модели различной сложности и классификации.
- •5.2 Классификация математических моделей в зависимости от оператора модели
- •Линейные и нелинейные модели
- •Обыкновенные дифференциальные модели
- •5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- •Детерминированные и неопределенные модели
- •Дискретно-детерминированная модель
- •Статические и динамические модели
- •Стационарные и нестационарные модели.
- •Формализация системы в виде автомата
- •Формализация системы в виде агрегата
- •Моделирование процесса функционирования агрегата
- •Моделирование агрегативных систем
- •Модель сопряжения элементов
- •6 Математические модели распределения ресурсов в исследовании операций
- •6.1 Моделирование операций распределения ресурсов
- •Формулировка задачи математического программирования
- •6.2 Модели линейного программирования
- •Формулировка общей задачи линейного программирования.
- •Типовые задачи линейного программирования
- •Транспортная задача.
- •Задача коммивояжера.
- •Задача о ранце.
- •Общая задача теории расписаний.
- •Примеры сведения практических задач к канонической транспортной задаче
- •6.3 Распределительные задачи линейного программирования
- •Примеры распределительных задач.
- •Распределение транспортных единиц по линиям
- •Выбор средств доставки грузов.
- •Задача о назначениях
- •Экономическая интерпретация задач линейного программирования.
- •Перевозки взаимозаменяемых продуктов
- •Перевозка неоднородного продукта на разнородном транспорте.
- •7 Математические модели физических явлений и процессов. Универсальность моделей
- •7.1 Математические модели на основе фундаментальных законов
- •Теоретический метод составления математических моделей
- •Основные фундаментальные законы механики
- •Работа, энергия, мощность
- •7.2 Уравнения движения
- •Динамика поступательного движения.
- •7.3 Уравнения состояния
- •Термодинамическая система.
- •Упругие свойства твердых тел.
- •Жидкости.
- •7.4 Универсальность моделей
- •Модели на основе аналогий
- •Типовые математические модели элементов и подсистем
- •Модель колебательного процесса
- •Модель консервативной системы.
- •Электрическая подсистема.
- •Модели элементов гидравлических систем
- •Модели элементов пневматических систем
- •8 Моделирование производственных процессов
- •8.1 Модели систем массового обслуживания
- •Основные элементы систем массового обслуживания.
- •Характеристики потока
- •Классификация смо
- •Оценка эффективности смо
- •Аналитические и статистические модели
- •8.2 Модели производственных процессов
- •Дискретный производственный процесс
- •Непрерывный производственный процесс
- •Агрегатное представление производственного процесса
- •Имитационное моделирование процессов функционирования
- •Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- •Формализация отклонения течения производственного процесса от нормального
- •Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- •Формализованная схема непрерывного производственного процесса.
- •9 Синтез модели (проекта) системы
- •9.1 Проектирование системы как процесс создания (синтеза) ее модели
- •9.2 Методология проектирования
- •Типовые проектные процедуры формирования облика системы
- •9.3 Эффективность системы Понятие эффективности системы
- •Формирование модели цели системы
- •Выбор критериев и показателей эффективности
- •Основные принципы выбора критериев эффективности:
- •Проблемы многокритериальности
- •9.4 Технология проектирования
- •9.5 Принятие решений в проектировании
- •Выбор в условиях неопределенности
- •Моделирование принятия решения
- •Прогнозирование в принятии решений
- •9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- •Основные экономические концепции инвестиционного анализа.
- •Состав работ при инвестиционном проектировании
- •Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- •Оценка конкурентоспособности
- •Методы оценки эффективности инвестиций
- •Метод определения чистой текущей стоимости.
- •Метод расчета рентабельности инвестиций
- •Метод расчета внутренней нормы прибыли
- •Расчет периода окупаемости инвестиций
- •Маркетинг и управление проектом
- •Задачи управления проектами
- •9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- •Особенности проектирования адаптивных систем
- •Моделирование функционирования технической системы Особенности построения моделей при проектировании
- •Формирование технического облика системы
- •Формирование структуры системы
- •Выбор основных проектных параметров системы
- •Формирование множества вариантов системы
- •10 Информационное обеспечение синтеза системы
- •10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- •Файл-серверные информационные системы
- •Клиент-серверные информационные системы
- •Архитектура Интернет/Интранет
- •Хранилища данных и системы оперативной аналитической обработки данных
- •10.2 Особенности проектирования информационных систем
- •Схемы разработки проекта
- •1. Предпроектные исследования
- •2 Постановка задачи
- •3 Проектирование системы
- •Архитектура программного обеспечения
- •Подсистема администрирования.
- •Техническая архитектура
- •Организационное обеспечение системы
- •4 Реализация и внедрение системы
- •10.3 Концепции автоматизации проектирования
- •История развития сапр
- •Классификация сапр
- •Стратегическое развитие сапр Современное состояние сапр
- •Направления разработки проектной составляющей сапр
- •Разновидности сапр
- •Математическое и информационное обеспечение сапр
- •11 Моделирование процесса управления
- •11.1 Основные определения
- •Формальная запись системы с управлением
- •11.2 Модели систем автоматического управления
- •Устойчивость движения систем
- •Определение программного движения и управление движением
- •11.3 Модели автоматизированных систем управления
- •Модели автоматизированных систем управления производственными процессами
- •Модели автоматизированных систем управления предприятием
1 Методологические основы моделирования сложных систем
1.1 Системность
Системные идеи лежат в основе деятельности человечества с начала его зарождения, но формулироваться и широкого распространяться начали с середины XX века - объекты стали рассматриваться как множества взаимосвязанных элементов (как системы), во взаимодействии с другими системами.
Необходимость решения специфических проблем, связанных с возникновением и развитием больших и сложных систем, вызвала к жизни множество приемов, методов, подходов, которые постепенно накапливались, развивались, обобщались, образуя, в конце концов, определенную технологию преодоления количественных и качественных сложностей.
Системные технологии вместе с их теоретическими основами получали разные названия: «методы проектирования», «методы инженерного творчества», «системотехника», «исследование операций»;
В начале 80-х годов 20 века уже стало очевидным, что все эти теоретические и прикладные дисциплины образуют как бы единый поток, «системное движение».
Системность предполагает представление об объекте любой природы как о совокупности элементов, находящихся в определенном взаимодействии между собой и с окружающим миром, а также понимание системной природы знаний. Системность - способ видения объекта и стиль мышления.
На этой основе (системность мира) формулируется общая методология системных исследований - набор методологических подходов (принципов) к исследованию системы - системный подход.
Сложные системы любого вида функционируют в сложном взаимодействии между собой и не поддаются адекватному описанию в рамках одной научной дисциплины - исследования таких систем имеют междисциплинарный характер и требует системного мышления. При системных исследованиях задача сводится к использованию наработанных методов и процедур других дисциплин: исследования операций, теории информации, теории принятия решений и др.
Исследование операций – предполагает выбор наилучшего решения поставленной системе задачи. Сложившаяся методология исследования операций - построение модели (формализованная схема функционирования системы, описание факторов и связей между ними, отражающих ход операции), постановка оптимизационной задачи и ее решение.
Менеджмент экономический определяет функции управления, что включает постановку целей, принятие решений и контроль их выполнения. Объектом экономического моделирования является вся экономическая сфера, включающая экономическую теорию, экономическую политику и хозяйственную практику. При решении этих задач естественно опираться на системные исследования и математическое моделирование.
Проблема организации управления может быть сформулирована как оптимизация децентрализации и передачи полномочий другим уровням на основе получаемой информации - возникла необходимость имитационного моделирования. Для сложных технических систем с управлением необходимо моделирование функционирования самой системы во внешней среде, прогнозирование возможных результатов управления. Управление вырабатывается на основе исследований процессов в системе (модели системы с учетом технических, технологических, социальных и прочих факторов).
Дифференциация науки привела не только к углублению научного знания об объекте, но и к ослаблению связей, прежде всего информационных между различными областями науки – возникла необходимость привлечения знаний из разных наук, что привело к возникновению междисциплинарных исследований, которые выступают в качестве средств установления связей между, отношений между различными объектами.
Стало возможным исследование объектов как таковых, их связей, отношений. Науками о специфических видах отношений являются, в частности, теория игр (изучает отношения конфликта), кибернетика (изучает отношения управления – рассматриваются управляющие системы, причем конкретный носитель управления значения не имеет).