Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Уч пособие Биоорг химия.doc
Скачиваний:
140
Добавлен:
25.08.2019
Размер:
5.62 Mб
Скачать

3. Поли- и гетерофункциональные соединения, участвующие в процессах жизнедеятельности

Подавляющее большинство органических веществ, участвующих в процессах метаболизма, представляют собой соединения с двумя и более функциональными группами. Их классифицировать следующим образом:

1) полифункциональные, содержащие одинаковые функциональные группы, например: этиленгликоль СН2ОН – СН2ОН, щавелевая кислота

НООС–СООН;

2) гетерофункциональные, содержащие различные функциональные группы, например: коламин СН2ОН–CH2NH2, пировиноградная кислота

СН3–СО –СООН;

3) гетерополифункциональные, например: моносахариды или яблочная кислота: НООС–СН(ОН) –СН2-СООН.

Наличие нескольких функциональных групп в молекуле оказывает значительное влияние на химические свойства соединения, приводя, с одной стороны, к усилению или ослаблениию реакционной способности соединений, а с другой — к появлению нехарактерных для монофункциональных соединений специфических свойств. Последние являются наиболее важными для обеспечения биологических функций, выполняемых этими веществами в организме.

3.1 Кислотно-основные свойства. Выполняется общая закономерность: наличие в молекуле групп ОН, SH, СООН приводит к усилению ее кислотных свойств, а аминогрупп NH2, NH — к усилению основных свойств. Кроме того, наличие дополнительной электроноакцепторной группы вблизи кислотного центра влечет за собой повышение кислотности соединения. Так, этиленгликоль СН2ОН–СН2ОН проявляет более сильные кислотные свойства по сравнению с этанолом СН3–СН2ОН; щавелевая кислота НООС–СООН является более сильной кислотой, чем уксусная СН3–СООН, а молочная кислота СН3–СН(ОН) –СООН – более сильной, чем пропановая СН3–СН2–СООН.

Во всех перечисленных случаях отрицательный индуктивный эффект заместителей (-I-эффект) вблизи групп ОН и СООН обусловливает значительную поляризацию связи О–Н и легкость отщепления протона, т.е. усиление кислотных свойств.

Наконец, наличие в молекуле различных по кислотно-основным свойствам функциональных групп обусловливает амфотерные свойства соединений. Предельным случаем является полный перенос протона от кислотного центра к основному, например в -аминокислотах, которые в кристаллическом состоянии, а так же в нейтральном водном растворе существуют в форме цвиттер-иона (биполярного иона, внутренней соли): H3N+–CH(R) –COO.

3.2 Нуклеофильно-электрофильные свойства. Выполняется общая закономерность, а именно: наличие электроноакцепторного заместителя облегчает протекание нуклеофильных реакций и затрудняет протекание электрофильных реакций. Так, в присутствии карбоксильной группы атом галогена, например в -галогенкарбоновых кислотах, легко замещается не только на гидроксильную группу (при взаимодействии со щелочами), но и на аминогруппу (при взаимодействии с аммиаком):

R-CH(Cl)-COOH + 3NH3  R-CH(NH2)-COONH4 + NH4C1

Приведенная реакция протекает по механизму SN.

3.3 Реакции циклизации. Относятся к специфическим реакциям гетерофункциональных соединений и могут протекать как внутримолекулярно, так и межмолекулярно в зависимости от удаленности функциональных групп друг от друга.

Внутримолекулярная циклизация. Выполняется общая закономерность: реакции характерны для гетерофункциональных соединений с - и -положением функциональных групп. Нуклеофильный и электрофильный реакционные центры находятся внутри одной молекулы и оказываются сближенными в пространстве за счет существования молекулы в «свернутой» (клешневидной) конформации. В результате реакций внутримолекулярной циклизации могут образоваться циклические полуацетали из альдегидоспиртов по механизму AN:

5-гидроксипентаналь циклический полуацеталь 5-гидроксипентаналя

Реакции идут самопроизвольно уже при незначительном нагревании. Образующиеся циклические продукты подвергаются гидролизу в кислой и щелочной среде с образованием соответствующих солей.

Межмолекулярная циклизация. Выполняется общая закономерность: реакции характерны для -замещенных кислот, проходят по механизму межмолекулярного элиминирования и сопровождаются образованием устойчивых шестичленных циклов — лактидов из - гидроксикислот или циклических диамидов – дикетопиперазидов из -аминокислот:

молочная кислота лактид молочной кислоты

3.4 Реакции комплексообразования. Выполняется общая закономерность: поли- и гетерофункциональные соединения с -положением функциональной группы выступают в роли бидентатных или полидентатных лигандов при взаимодействии с ионами переходных металлов с образованием внутрикомплексных соединений — хелатов.

Реакции хелатообразования широко распространены и играют существенную роль в процессах метаболизма. Один из примеров — образование внутрикомплексной соли — глицината меди при взаимодействии в растворе аминоуксусной кислоты с солями меди (II):

Большинство ионов металлов в организме находятся в виде устойчивых хелатных комплексов с органическими лигандами. Одним из примеров таких соединений является структура гемма гемоглобина крови и хлорофилла.