
- •Методические указания к решению задач по курсу физики (часть 3)
- •Методические указания к решению задач
- •Пример решения задачи.
- •Геометрическая оптика.
- •Пример решения задачи.
- •1) Из закона преломления sinε1/sinε2 имеем
- •Из рисунка, следует, что угол падения ε2 на вторую грань призмы равен
- •Так как , то . Теперь найдем углы γ и γ':
- •12. Фокусное расстояние f вогнутого зеркала равно 15 см. Зеркало дает действительное изображение предмета, уменьшенное в три раза. Определить расстояние а от предмета до зеркала
- •18. Из стекла требуется изготовить плосковыпуклую линзу, оптическая сила d которой равна 5дптр. Определить радиус r кривизны выпуклой поверхности линзы.
- •19. Двояковыпуклая линза имеет одинаковые радиусы кривизны поверхностей. При каком радиусе кривизны r поверхностей линзы главное фокусное расстояние f ее будет равно 20 см?
- •20. Главное фокусное расстояние f собирающей линзы в воздухе равно 10 см. Определить, чему оно равно: 1) в воде; 2) в коричном масле.
- •2. Интерференция света.
- •Пример решения задачи.
- •Задачи.
- •16. Найти расстояние между двадцатым и двадцать первым кольцами Ньютона, наблюдаемым в отражённом свете, если второе и третье кольца отстоят друг от друга на 1 мм.
- •19. Расстояние от щелей до экрана в опыте Юнга равно 1м. Определить расстояние между щелями, если на отрезке длиной 1 см укладывается 100 тёмных интерференционных полос. Длина волны 0,7 мкм.
- •29. Найти расстояние между двадцатым и двадцать превым кольцами Ньютона, наблюдаемыми в отраженном свете, если второе и третье кольца отстоят друг от друга на 1 мм.
- •33. Во сколько раз увеличится расстояние между соседними интерферен-ционными полосами на экране в опыте Юнга, если зеленый светофильтр заменить красным?
- •3.Дифракция света.
- •Пример решения задачи.
- •Задачи.
- •4.Поляризация света.
- •Пример решения задачи.
- •Задачи.
- •3. На сколько процентов уменьшится интенсивность света после прохож-дения через призму Николя, если потери света составляют 10%.
- •5. Угол падения i1 луча на поверхность стекла равен 600. При этом отраженный пучок света оказался максимально поляризованным. Опре-делить угол i2 преломления луча.
- •5. Фотометрия.
- •Пример решения задачи.
- •Задачи.
- •2. Норма минимальной освещенности для содержания птиц
- •6.Фотоэффект. Давление света . Фотоны. Эффект Комптона.
- •Пример решения задачи.
- •2. Кинетическая энергия электрона отдачи, как это следует из закона сохранения энергии, равна разности между энергией ε падающего фотона и энергией ε' рассеянного фотона:
- •Задачи.
- •2. Определить энергию ε, массу m и импульс р фотона с длиной волны 1,24 нм.
- •8. Параллельный пучок монохроматического света с длиной волны 0,663 мкм падает на зачернённую поверхность и производит на нее давление 0,3 мкПа. Определить концентрацию n фотонов в световом пучке.
- •10. На поверхность калия падает свет с длиной волны 150 нм. Опреде-лить максимальную кинетическую энергию Тmax фотоэлектронов.
- •16. На металл падает рентгеновское излучение с длиной волны 1 нм. Пренебрегая работой выхода, определить максимальную скорость υmax фотоэлектронов.
- •20. Определить максимальное изменение длины волны (∆λ)max при ком-птоновском рассеивании света на свободных электронная и свободных протонах.
- •33. Красная граница фотоэффекта для цезия 620 нм. Определить кинети-ческую энергию т фотоэлектронов в электрон-вольтах, если на цезий падают лучи с длиной волны 200 нм.
- •34. На поверхность 100 см2 ежеминутно падает 10 Дж световой энергии. Найти световое давление, если поверхность: 1) полностью отражает все лучи; 2) при коэффициенте отражения света 0,50.
- •36. Какова наибольшая длина вольны λкр света, под действием которого можно получить фотоэффект с поверхности натрия? Работа выхода для натрия 2,5 эв.
- •44. Определить в электрон- вольтах энергию ε фотона, которому соответствует длина волны равная 3800 а (фиолетовая граница видимого спектра).
- •65. Задерживающее напряжение для платинового катода составляет 3,7 в. При тех же условиях для другого катода задерживающее напряжение равно 5,3 в. Определить работу выхода электронов из этого катода.
- •70. Электрическая лампа расходует на излучение мощность 45 Вт. Опре-делить давление света на зеркало, расположенное на расстояние 1 м от лампы нормально к падающим лучам.
- •72. Температура в центре Солнца порядка 1,3 ∙ 107 к. Найти равновесное давление теплового излучения, считая его изотропным.
- •7. Тепловое излучение.
- •Пример решения задачи.
- •Задачи.
- •5. Абсолютно черное тело имело температуру 6000 к. При остывании тела температура стала равна 1000 к. Во сколько раз уменьшилась максимальная испускательная способность?
- •24. Определить температуру т и энергетическую светимость (излуча-тельность) Re абсолютно черного тела, если максимум энергии излучения приходится на длину волны 600 нм.
- •Вопросы к модулю №1.
- •Примерный билет к модулю №1 по теме: «Волновая и квантовая оптика».
- •8. Волны де Бройля.
- •Пример решения задачи.
- •Задачи.
- •8. Вычислить длину волны де Бройля λ для протона, прошедшего ускоряющую разность потенциалов u, равную : 1) 1 мв; 2) 1 гв.
- •12. Кинетическая энергия т электрона равна удвоенному значению его энергии покоя (2m0c2). Вычислить длину волны де Бройля λ для такого электрона.
- •9. Строение атома.
- •Пример решения задачи.
- •Задачи.
- •10. Соотношение неопределенностей. Уравнение Шредингера.
- •Простейшие случаи движения микрочастиц.
- •Пример решения задачи.
- •Задачи.
- •24. Определить относительную неопределенность ∆р/р импульса движу-щейся частицы, если допустить, что неопределенность ее координаты равна длине волны де Бройля.
- •26. Частица находится в потенциальном ящике в основном состоянии. Какова вероятность обнаружения частицы: в средней трети ящика; в крайней трети ящика.
- •11. Радиоактивность.
- •Пример решения задачи.
- •Задачи.
- •1 2. Из каждого миллиона атомов радиоактивного изотопа каждую секунду распадается 200 атомов. Определить период полураспада изотопа.
- •28. Период полураспада т½ радиоактивного нуклида равен 1 ч. Опреде-лить среднюю продолжительность τ жизни этого нуклида.
- •29. Определить число n атомов, распадающихся в радиоактивном изотопе за время 10 с, если его активность 105 Бк. Считать активность постоянной в течение указанного времени.
- •12. Энергия ядерной реакции. Строение ядра.
- •Пример решения задачи.
- •Задачи.
- •Вопросы к модулю №2.
- •Задача 2
- •Задача №3
- •Задача 4
- •Задача 5
- •Задача 6
- •Задача 7
- •Задача 8.
- •Задача 9.
- •Задача 10.
- •Работы выхода Авых электронов из различных металлов (эВ)
- •Латинский алфавит.
- •Греческий алфавит.
- •Cодержание:
Примерный билет к модулю №1 по теме: «Волновая и квантовая оптика».
Волновые свойства света. Интерференция света. Когерентные волны. Разность хода лучей.
Дифракция света. Принцип Френеля. Метод зон Френеля.
Поляризация света. Двойное лучепреломление. Причина двойного лучепреломления.
Энергия кванта света равна 0,6 МэВ. Найти массу фотона и его импульс.
Вычислить радиусы первых пяти зон Френеля, если расстояние от источника света до волновой поверхности 1м., а длина волны 5,7 10-7 м.
Найти, какое количество энергии с 1 см2 в 1 с излучает черное тело , если известно, что максимальная спектральная плотность его энергетической светимости приходится на длину волны в 4840 А.
На стеклянную пластину положено выпуклой стороной плосковыпуклая линза с радиусом кривизны 1 м. Сверху линза освещается монохроматическим светом длинной волны 0,6 мкм. Определить расстояние между 4 и 9 темными кольцами ньютона в отраженном свете.
На дифракционную решетку падает нормально монохроматический свет (λ=0.5 мкм) при этом для максимума второго порядка получается угол отклонения максимума третьего порядка 15˚. Какова длина волны, для которой угол отклонения максимума третьего порядка 18˚.
На дифракционную решетку, содержащую 50 штрихов на 1 мм, падает нормально монохроматический свет. Зрительная труба спектрометра наведена на спектр третьего порядка, чтобы видеть другой спектр третьего порядка трубу повернули на угол 10 ˚. Определить длину световой волны.
Абсолютно черное тело находится при температуре Т1=2900˚К. В результате остывания этого тела длина волны, на которую приходится максимум спектральной плотности энергетической светимости, изменилась на λ=9 мкм. До какой температуры Т2 охладилось тело.
8. Волны де Бройля.
Длина волны де Бройля :
,
где р – импульс частицы.
Импульс частицы и его связь с кинетической энергией Т
а
)
;
б) ; ,
где m0 – масса покоя частицы; m – релятивистская масса; υ – скорость части-цы; с –скорость света в вакууме; Е0 – энергия покоя частицы (Е0 = m0 с2).
Пример решения задачи.
На узкую щель шириной а = 1 мкм направлен параллельный пучок электронов, имеющих скорость υ=3,65 • 106 м/с. Учитывая волновые свойства электронов, определить расстояние х между двумя максимумами интенсивности первого порядка в дифракционной картине, полученной на экране, отстоящем на L = 10 см от щели.
Р
ешение.
Согласно
гипотезе де Бройля, длина волны λ,
соответствующая частице массой m,
движущейся со скоростью
υ,
выражается
формулой:
Дифракционный максимум при дифракции на одной щели наблюдается при условии
где к = 0, 1, 2, 3, ... — порядковый номер максимумов; a — ширина щели.
Для максимумов первого порядка (k=1) угол φ заведомо мал, поэтому sin φ= φ и, следовательно
А искомая величина х, как следует из рисунка
Подстановка в последнее равентсво длины волны Де Бройля по формуле дает
После вычисления по формуле получим: x=60мкм
Ответ: x=60мкм.