Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3.Характеристики детекторов.doc
Скачиваний:
17
Добавлен:
19.08.2019
Размер:
146.94 Кб
Скачать

VII. Мертвое время

Почти для всех детекторов имеется минимальное время, которое позволяет отделить два события, чтобы они были зарегистрированы как два отдельных импульса. В некоторых случаях это время может определяться непосредственно процессами в датчике, в других случаях предел может возникнуть в электронике. Это минимальное время обычно называют мертвым временем измерительного тракта. Из-за случайной природы радиоактивного распада, всегда существует некоторая вероятность, что истинное событие будет потеряно, потому что оно происходит слишком быстро после предыдущего события. Эти "потери мертвого времени" могут стать довольно серьезными, когда сталкиваются с большими скоростями счета, и любые измерения, сделанные при этих условиях, должны учитывать погрешности этих потерь. В этом разделе мы обсудим некоторые простые модели поведения мертвого времени счетных систем, а также рассмотрим два экспериментальных метода определения мертвого времени.

А. Модели поведения мертвого времени

Существуют две модели поведения мертвого времени в счетных системах: продлевающееся и непродлевающееся мертвое время. Эти модели описывают идеализированное поведение реальных систем счета. Иллюстрация обоих моделей представлена на рис. 4-7. В центре рисунка приведена временная шкала, на которой показаны шесть последовательных и беспорядочных во времени событий в детекторе. Внизу рисунка показано поведение непродлевающегося мертвого времени детектора, предполагая, что он им обладает. Постоянное время T появляется после каждого истинного события, которое происходит в течение живого времени детектора. Реальные события, которые происходят в течение мертвого периода теряются и, как предполагается, вообще не производят никакого эффекта на поведение детектора.

Рисунок 4-7. Иллюстрация двух моделей поведения мертвого времени для радиационных детекторов.

В показанном примере, детектор непродлевающего типа сосчитал бы четыре импульса от шести реальных взаимодействий. Поведение детектора продлевающегося типа показано в верхней части рис. 4-7. То же самое мертвое время T, как предполагается, следует за каждым истинным взаимодействием, которое происходит в течение живого времени детектора. Истинные события, которые происходят в течение мертвого периода, хотя и не сосчитаны, но, как видно расширяют мертвое время T после каждого потерянного события. В этом случае зарегистрированы только три импульса для шести истинных событий.

Обе модели предсказывают одинаковые потери в первом приближении и отличаются только, когда скорости истинных событий становятся высокими. Эти модели, в некотором смысле характеризуют две крайности идеализированного поведения системы, и реальные системы подсчета будут часто показывать поведение, которое является промежуточным между этими крайностями. Конкретное поведение определенной системы подсчета может зависеть от физических процессов, связанных непосредственно с детектором или с задержками, обусловленными обработкой импульсов и электроникой.

В следующих рассуждениях мы исследуем реакцию детектора на постоянный источник излучения и вводим следующие определения:

n = истинная скорость взаимодействия (счета)

м = зарегистрированная скорость счета

T = мертвое время

Мы предполагаем, что время измерения настолько велико, что n и м можно считать как средние величины. В целом мы хотим получить выражение истинной скорости счета n как функции зарегистрированной скорости счета м и мертвого времени T так, чтобы можно было сделать соответствующие исправления в зарегистрированной скорости счета. В непродлевающемся случае, часть всего времени, когда детектор мертв, дается простым выражением мτ. Поэтому скорость, при которой потеряны истинные события будет nmτ. Но, так как (n – м) - другое выражение потерь, то:

n – м = nmτ (4.23)

Решая для n, получаем:

n = m/(1- mτ), непараллельная модель (4.24)

В продлевающемся случае мертвые периоды не всегда имеют одинаковую длину, поэтому мы не можем применить тот же самый аргумент. Вместо этого, мы отмечаем, что скорость м является идентичной скорости возникновений временных интервалов между истинными событиями, которые превышают τ. Распределение интервалов между случайными событиями, происходящими по средней норме n, были ранее показаны в (3-60), как:

где P1(T)dT - вероятность наблюдения интервала, длина которого находится в пределах dT от T. Вероятность интервалов, больших чем τ, может быть получена, интегрированием этого распределения от τ до бесконечности:

Возникновение нормы таких интервалов тогда получается умножением вышеупомянутого выражения истинной нормы n:

,параллельная модель (4.24)

Параллельная модель приводит к более тяжелому результату, потому что мы не можем решить явно за истинную норму n. Выражение (4-27) должно быть решено многократно, если n вычисляется по измеренному м и известному τ.

Зависимость наблюдаемого потока м против истинного потока n дается на рис. 4-8 для обеих моделей. Когда потоки низкие, две модели дают фактически тот же самый результат, но поведение по высоким потокам заметно отличается. Непродлевающая система приблизится к асимптотическому значению наблюдаемого потока 1/τ, который представляет ситуацию, в которой счетчик едва имеет время, чтобы закончить один мертвый период перед стартом другого. Для продлевающегося поведения, наблюдаемый поток, как видим, проходит через максимум. Очень высокие истинные потоки взаимодействия приводят к многократному расширению мертвого периода после начального зарегистрированного счета, и очень немного истинных событий могут быть зарегистрированы. Нужно всегда быть осторожным, используя систему подсчета, которая может быть продлевающейся, чтобы гарантировать, что якобы низкие наблюдаемые потоки фактически соответствуют низким потокам взаимодействия, а не очень высоким потокам на противоположной стороне максимума. Ошибки в интерпретации ядерных данных подсчета от продлевающихся систем происходили в прошлом, не учитывая тот факт, что есть всегда два возможных истинных потока взаимодействия, соответствующие данному наблюдаемому потоку. Как показано на рис. 4-8, наблюдаемый поток m1 может соответствовать или истинному потоку n1, или n2. Двусмысленность может быть решена только, изменяя истинный поток в известном руководстве, наблюдая, увеличивается ли наблюдаемый поток или уменьшается.

Для низких потоков (n <<1/τ) могут быть записаны следующие приближения:

Таким образом, две модели приводят к идентичным результатам в пределе маленьких потерь мертвого времени.

Рис. 4-8 Изменение наблюдаемого потока м, как функции истинной скорости n для двух моделей мертвого времени.

Если возможно, нужно избежать условий измерения, при которых потери мертвого времени являются высокими из-за ошибок, которые неизбежно происходят в создании исправлений потери. Значение τ может быть неустойчивым или подвергнуто изменению, и, возможно, поведение системы не будет точно следовать ни за одной из моделей, описанных выше. Когда потери больше чем 30 или 40 %, рассчитанный истинный поток становится очень чувствительным к маленьким изменениям во взвешенном потоке и принятом поведении системы. Вместо этого пользователь должен стремиться уменьшить потери, изменяя условия измерения или выбирая систему подсчета с меньшим мертвым временем.