Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
EFFEKTIVN_J_ZARYaD_ATOMA.doc
Скачиваний:
1
Добавлен:
19.08.2019
Размер:
239.1 Кб
Скачать

Эффективный заряд атома

характеризует разность между числом электронов, принадлежащих данному атому в хим. соед., и числом электронов своб. атома. Для оценок Э. з. а. используют модели, в к-рых экспериментально определяемые величины представляют как ф-ции точечных неполяризуемых зарядов, локализованных на атомах; напр., дипольный момент двухатомной молекулы рассматривают как произведение Э. з. а. на межатомное расстояние. В рамках подобных моделей Э. з. а. можно рассчитать, используя данные оптич. или рентгеновской спектроскопии, ЯМР и др. Однако, поскольку электронная плотность в хим. соед. делокализована и границ между атомами не существует, нельзя описать разл. характеристики соед. одним набором Э. з. а.; значения этого показателя, определенные разными эксперим. методами, могут не совпадать. Э. з. а. можно определить также на основе квантовохим. расчетов.  Э. з. а., определенные в рамках к.-л. одной модели или в однотипных расчетах, используют для корреляции с различными физ.-хим. характеристиками соед., установления реакц. центров в молекулах, оценки степени ионности хим. связи. Особенно важно, что для кислорода в большинстве неорг. соединений даже таких, как MgO и СаО, отрицательный З. э. получен близким к единице — от —0,9 до —1,1 (Урусов, 1966; Баринский, Нефедов, 1967 и др.). Связанные же с кислородом атомы Si, S, Cl, Cr, Mn могут иметь максимальные заряды соответственно 1,97; 2,49; 2,27; 2,0; 2,0, вместо предполагавшихся в соответствующих соединениях Si4+, S6+, Cl7+, Cr6+, Mn7+. В разл. соединениях З. э. колеблются. Так, по данным существующих исследований Si в оливине имеет З. э. равный 1,55, а в кварце 1,97, Al в анортите 1,23, а в А12О3 1,53, Mg в MgO 1,01, а в Mg(ClO4)2 1,46, Na в Na3PO4 0,83, а в Na3SO4 1,0, и т. д. 

Способы образования ковалентной связи

Существуют два главных способа образования ковалентной связи *.

1) Электронная пара, образующая связь, может образоваться за счет неспаренных электронов, имеющихся в невозбужденныхатомах.

Однако число ковалентных связей может быть больше числа неспаренных электронов. Например, в невозбужденном состоянии (которое называется также основным состоянием) атом углерода имеет два неспаренных электрона, однако для него характерны соединения, в которых он образует четыре ковалентные связи. Это оказывается возможным в результате возбуждения атома. При этом один из s-электронов переходит на p-подуровень:

Увеличение числа создаваемых ковалентных связей сопровождается выделением большего количества энергии, чем затрачивается на возбуждение атома. Поскольку валентность атома зависит от числа неспаренных электронов, возбуждение приводит к повышению валентности. У атомов азотакислородафтора количество неспаренных электронов не увеличивается, т.к. в пределах второго уровня нет свободных орбиталей *, а перемещение электронов на третий квантовый уровень требует значительно большей энергии, чем та, которая выделилась бы при образовании дополнительных связей. Таким образом, при возбуждении атома переходы электронов на свободныеорбитали возможны только в пределах одного энергетического уровня.

Элементы 3-го периода – фосфорсерахлор – могут проявлять валентность, равную номеру группы. Это достигается возбуждением атомов с переходом 3s- и 3p-электронов на вакантные орбитали 3d-подуровня:

P*  1s22s22p63s13p33d1           (валентность 5)

S*  1s22s22p63s13p33d2           (валентность 6)

Cl* 1s22s22p63s13p33d3           (валентность 7)

В приведенных выше электронных формулах * возбужденных атомов подчеркнуты подуровни *, содержащие только неспаренныеэлектроны. На примере атома хлора легко показать, что валентность может быть переменной:

В отличие от хлора, валентность атома F постоянна и равна 1, т.к. на валентном (втором) энергетическом уровне отсутствуют орбитали d-подуровня и другие вакантные орбитали.

2) Ковалентные связи могут образовываться за счет спаренных электронов, имеющихся на внешнем электронном слое атома. В этом случае второй атом должен иметь на внешнем слое свободную орбиталь. Например, образование иона аммония из молекулы аммиакаи иона водорода можно отобразить схемой:

Атом, предоставляющий свою электронную пару для образования ковалентной связи *, называется донором, а атом, предоставляющий пустую орбиталь, – акцептором. Ковалентная связь, образованная таким способом, называется донорно-акцепторной связью. В катионе аммония эта связь по своим свойствам абсолютно идентична трем другим ковалентным связям, образованным первым способом, поэтому термин “донорно-акцепторная” обозначает не какой-то особый вид связи, а лишь способ ее образования.

Или,если краткооо

 

Осуществляется за счет электронной пары, принадлежащей обоим атомам. Различают обменный и донорно-акцепторный механизм образования ковалентной связи.

 

1)     Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару:

 

H + H H : H

 

 

2)     Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь;

 

Возбужденное состояние атома

Возбужденное состояние атома - энергетически нестабильное состояние, в которое атом переходит, получая энергию извне. В возбужденном состоянии атом может пребывать лишь короткое время. Возбужденный атом, отдавая энергию, возвращается в основное состояние.

взаимодействие, донорно-акцепторное иначе донорно-акцепторная связь; координационная связь — взаимодействие, основанное на переносе заряда или передаче пары электронов от донора к акцептору.

Донорно-акцептороное взаимодействие включает случаи переноса заряда между молекулами донора и акцептора без образования между ними химической связи и передачи неподеленной электронной пары от донора к акцептору, приводящей к образованию связи.

В первом случае речь может идти, например об органических донорах, в частности — -донорах, например, тетракис(диметиламино)этилене (ТДАЭ), других ненасыщенных аминосоединениях, металлоценах и т. п., и органических акцепторах, таких как фуллерены или хинодиметаны с акцепторными заместителями. При взаимодействии таких соединений образуется комплекс с переносом заряда, в котором отрицательно заряженный акцептор и положительно заряженный донор взаимодействуют электростатически. Важную роль играют такие системы, где в основном электронном состоянии перенос заряда только частичный, тогда как состояние с практически полным переносом заряда может быть получено при фотовозбуждении. Подобные системы, донорно-акцепторные диады, а также триады, в которых между донором и акцептором внедрена мостиковая группа, способствующая повышению времени жизни состояния с переносом заряда, могут использоваться для создания устройств для преобразования солнечной энергии (см. например, искусственный фотосинтез). Вообще, перенос заряда в различных его формах и проявлениях играет ключевую роль во многих биологических процессах.

Во втором случае донор и акцептор представляют собой, соответственно, кислоту и основание Льюиса. Если обычная ковалентная связь между двумя атомами обусловлена образованием общей пары электронов — по одному от каждого атома, то донорно-акцепторная связь осуществляется за счет пары электронов донора и свободной (незаполненной) орбитали акцептора. Этот вид донорно-акцепторного взаимодействия — основной способ образования комплексных соединений (рис.). Подобное взаимодействие отвечает за многие кислотно-основные превращения, связанные с переносом иона водорода (акцептора), а также образование супрамолекулярных наноструктур.

Направленность ковалентной связи является результатом стремления атомов к образованию наиболее прочной связи за счет возможно большей электронной плотности между ядрами. Это достигается при такой пространственной направленности перекрывания электронных облаков, которая совпадает с их собственной. Исключение составляют s-электронные облака, поскольку их сферическая форма делает все направления равноценными. Для p- и d-электронных облаков перекрывание осуществляется вдоль оси, по которой они вытянуты, а образующаяся при этом связь называется σ-связью. σ-Связь имеет осевую симметрию, и оба атома могут вращаться вдоль линии связи, т.е. той воображаемой линии, которая проходит через ядра химически связанных атомов.

После образования между двумя атомами σ-связи для остальных электронных облаков той же формы и с тем же главным квантовым числом * остается только возможность бокового перекрывания по обе стороны от линии связи. В результате образуется π-связь. Она менее прочна, чем σ-связь: перекрывание происходит диффузными боковыми частями орбиталей. Каждая кратная связь (например, двойная или тройная) всегда содержит только одну σ-связь. Число σ-связей, которые образует центральный атом в сложных молекулах или ионах, определяет для него значение координационного числа. Например, в молекуле NH3 и ионе NH4+ для атома азота оно равно трем и четырем. Образование σ-связей фиксирует пространственное положение атомов относительно друг друга, поэтому число σ-связей и углы между линиями связи, которые называются валентными углами, определяют пространственную геометрическую конфигурацию молекул.

При оценке степени перекрывания электронных облаков следует учитывать знаки волновых функций * электронов. При перекрывании облаков с одинаковыми знаками волновых функций электронная плотность в пространстве между ядрами возрастает. В этом случае происходит положительное перекрывание, приводящее к взаимному притяжению ядер. Если знаки волновых функций противоположны, то плотность электронного облака уменьшается (отрицательное перекрывание), что приводит к взаимному отталкиванию ядер.

Ионная связь – частный случай ковалентной, когда образовавшаяся электронная пара полностью принадлежит более электроотрицательному атому, становящемуся анионом. Основой для выделения этой связи в отдельный тип служит то обстоятельство, что соединения с такой связью можно описывать в электростатическом приближении, считая ионную связь обусловленной притяжением положительных и отрицательных ионов. Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщености. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона). Ионные пары могут существовать в газообразном состоянии в виде полярных молекул. В газообразном состоянии NaCl имеет дипольный момент ~3∙10–29 Кл∙м, что соответствует смещению 0,8 заряда электрона на длину связи 0,236 нм от Na к Cl, т. е. Na0,8+Cl0,8–.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]