- •1. Классификация полупроводниковых материалов.
- •1. Явления поляризации в диэлектриках. Виды поляризации. Диэлектрическая проницаемость и диэлектрические потери.
- •4. Стеклообразные диэлектрики, их свойства и применение.
- •5. Неполярные, полярные и термостойкие органические диэлектрики.
- •6. Конструкционные металлические сплавы на основе Fe, Al, Cu
- •7. Композиционные листовые пластмассы. Материалы для оснований печатных плат вч и свч диапазонов.
- •2.5. Композиционные, наполненные пластмассы
- •2.5.2. Наполнители
- •2.5.3. Пластмассы с листовым наполнителем
- •2.5.4. Листовые материалы для производства печатных плат
- •8. Сегнетоэлектрики
- •12. Керамика, особенности структуры и основные характеристики установочной и конденсаторной керамики.
- •2. Керамика
- •3.3.2. Конденсаторная керамика
- •14. Зонная структура металла, концентрация и подвижность носителей заряда в металле.
- •15. Эпитаксиальный рост пленок полупроводника.
- •16 Анализ p–n перехода, физика работы диода.
- •18. Ионная имплантация примесей в полупроводник.
- •22. Ионно-плазменное осаждение тонких пленок.
- •27.Усилительные каскады на биполярных и полевых транзисторах.
- •1.2 Эквивалентные схемы резисторного каскада на различных частотах
- •31 Ескд. Виды и комплектность конструкторской документации.
- •33. Конструктивные, технологические и эксплуатационные требования к эс
- •34. Стадии и этапы проектирования электронных средств и разработки технической документации.
- •35. Особенности проектирования эс
- •39. Унифицированные базовые конструкции и их влияние на качество и себестоимость.
- •IV. Унификация.
- •41. Защита рэс от атмосферных воздействий.
- •42. Защитные покрытия, их классификация и основные характеристики. Виды и материалы покрытий.
- •44. Обеспечение надежности рэс в процессе проектирования и производства рэс.
- •45. Статистический ряд и его обработка при управлении качеством
- •46. Международные стандарты по управлению качеством.
- •47. Математическая модель биполярного транзистора, ее основные элементы
- •50. Структура и состав сапр. Состав и возможности современных пакетов проектирования рэс.
- •54. Топологическое проектирование рэс (компоновка, размещение, трассировка), как задачи структурной оптимизации.
- •57. Амплитудная модуляция
- •58. Обобщенная трехточечная схема автогенератора
- •58. Транзисторные автогенераторы
- •1.5 Кварцевые автогенераторы
- •61. Физическая сущность процесса детектирования амплитудно-модулированных сигналов
- •В этом случае ток, протекающий через диод будет иметь им-
- •1.4 Схемы диодных детекторов Различают последовательную (рис. 2.5) и параллельную (рис. 2.6) схемы построения диодных детекторов.
- •1.5 Нелинейные искажения в детекторе больших амплитуд
- •1.6 Линейное детектирование в амплитудных детекторах
- •Тогда ток, протекающий в цепи диода, равен
- •Определим среднее значение тока в цепи диода
- •Пусть на вход детектора подан ам- сигнал
- •Определим коэффициент детектирования
- •С учетом выражений (2.6) и (2.4) запишем
- •64. Принцип факсимильной передачи сообщений.
- •65. Типизация технологических процессов. Типовые и групповые технологические процессы.
- •69.Типы и свойства нефольгированных и фольгированных диэлектриков, используемых для изготовления печатных плат.
- •70. Методы изготовления пп по субтрактивной технологии.
- •71. Методы изготовления пп по аддитивной технологии
- •74. Методы изготовления мпп
- •4.3.1.1. Метод металлизации сквозных отверстий
- •4.3.1.2. Метод открытых контактных площадок
- •4.3.1.3. Мпп с выступающими выводами
- •4.3.1.4. Метод попарного прессования
- •4.3.1.5. Метод послойного наращивания
- •4.3.2. Мпп прецизионные на фолыированном основании
- •4.3.4. Мпп прецизионные на нефольгированном основании
- •4.3.5. Мпп изготовленные методом пафос
- •75. Металлизация диэлектриков
- •77. Схемы технологических процессов
- •80. Методы и технология монтажной пайки.
- •81. Пайка одиночной и двойной волной припоя.
- •82. Конвекционная пайка. Температурный профиль пайки. Инфракрасная пайка.
- •83. Производственные погрешности, причины возникновения и законы распределения.
- •84. Задачи технологической подготовки рэс. Стандарты единой системы технологической подготовки производства и их классификация
- •Прогрессивных технологических процессов (тп),
- •Основные функции тпп. Задачи тпп, решаемые на стадиях проектирования
- •88. Изготовление деталей из керамических материалов.
- •Дополнительные операции.
- •89. Теплопроводность (кондуктивный перенос тепла)
- •3.1. Закон Фурье
- •3.2. Тепловые коэффициенты. Тепловые сопротивления. Метод электротепловых аналогий
- •3.3. Теплопередача цилиндрической, однородной стенки (трубы)
- •91. Конвективный теплообмен. Закон Ньютона-Рихмана.
- •92. Теплообмен излучением. Перенос тепла излучением.
- •Закон Ламберта -Этот закон определяет значение плотности потока излучения е в зависимости от его направления по отношению к равномерно излучающей поверхности тела.
- •93. Влагообмен в рэс Первый и второй закон Фика.
- •97. Классификация систем охлаждения рэа
- •11.2.1. Контактный способ охлаждения
- •11.2.2. Естественное воздушное охлаждение
- •11.2.3. Принудительное воздушное охлаждение
- •11.2.4. Жидкостные системы
4.3.1.2. Метод открытых контактных площадок
Особенностью конструкции МПП с открытыми контактными площадками является отсутствие электрической связи между слоями и ее появление только после установки и пайки выводов ЭРИ к контактным площадкам любого из слоев (рис. 4.32).
Каждый слой (их может быть более 20-ти) изготавливают на одностороннем фольгированном диэлектрике химическим негативным методом. Отверстия в слоях получают штамповкой. После сборки, совмещения и склеивания слоев клеем БФ-4 на специальном приспособлении обеспечивается доступ к контактным площадкам внутренних слоев. Для увеличения
Рис. 4.32. Конструкция МПП с открытыми контактными площадками: / — открытые контактные площадки; 2 — печатный проводник; 3 — слой диэлектрика
площади контакта диаметр контактной площадки должен быть больше диаметра отверстия.
К достоинствам МПП с открытыми контактными площадками следует отнести большое число слоев, ремонтопригодность, а к недостаткам — невысокий класс точности (3-й).
4.3.1.3. Мпп с выступающими выводами
В многослойных ПП с выступающими выводами электрическая связь между слоями выполняется с помощью печатных проводников внутренних слоев, отогнутых на наружный слой МПП и закрепленных изоляционными накладками (рис. 4.33).
Рис. 4.33. Конструкция МПП с выступающими выводами: / — накладка; 2 — контактная площадка; 3 — выступающий вывод; 4 — печатный проводник
К преимуществам данного метода данной конструкции относятся:
большое число слоев (до 15-ти);
высокая механическая прочность;
возможность параллельного выполнения операций.
4.3.1.4. Метод попарного прессования
При изготовлении МПП методом попарного прессования (рис. 4.34) сначала получают две ДПП с металлизированными отверстиями комбинированным негативным методом, затем их прессуют вместе с размещенной между ними изоляционной склеивающей прокладкой. После сверления в полученном полупакете сквозных отверстий получают рисунок наружных слоев и сквозные металлизированные отверстия. Затем эти полупакеты прессуют, сверлят сквозные отверстия и получают рисунок наружных слоев и металлизированные отверстия комбинированным позитивным методом. Таким образом осуществляют электрические соединения между наружными и внутренними слоями МПП.
Рис. 4.34. МПП, изготовленная методом попарного прессования
К недостаткам метода попарного прессования можно отнести:
длительный технологический цикл последовательного выполнения операций;
большое количество химико-гальванических операций и др.
4.3.1.5. Метод послойного наращивания
При изготовлении МПП методом послойного наращивания (рис. 4.35) сначала на первый слой перфорированного диэлектрика напрессовывается медная фольга с одной стороны, затем проводится операция химико-гальванического меднения. При этом медь полностью заполняет отверстия в диэлектрике и осаждается на поверхности диэлектрика, свободной от медной фольги. На этом сформированном проводящем слое выполняется рисунок схемы химическим негативным методом. Затем напрессовывается второй слой перфорированного диэлектрика, проводится химико-гальваническое меднение отверстий и поверхности диэлектрика второго слоя, выполняется рисунок второго слоя и т. д. Связь между слоями осуществляется при помощи столбиков меди в отверстиях.
Рис. 4.35. МПП, изготовленная методом послойного наращивания
К преимуществам метода послойного наращивания относятся:
надежность межслойных соединений;
большое число слоев (до 10). Недостатки метода послойного наращивания:
длительный технологический цикл;
невозможность использования ЭРИ со штыревыми выводами, так как в конструкции МПП отсутствуют отверстия;
высокая стоимость изготовления.
