
- •1. Классификация полупроводниковых материалов.
- •1. Явления поляризации в диэлектриках. Виды поляризации. Диэлектрическая проницаемость и диэлектрические потери.
- •4. Стеклообразные диэлектрики, их свойства и применение.
- •5. Неполярные, полярные и термостойкие органические диэлектрики.
- •6. Конструкционные металлические сплавы на основе Fe, Al, Cu
- •7. Композиционные листовые пластмассы. Материалы для оснований печатных плат вч и свч диапазонов.
- •2.5. Композиционные, наполненные пластмассы
- •2.5.2. Наполнители
- •2.5.3. Пластмассы с листовым наполнителем
- •2.5.4. Листовые материалы для производства печатных плат
- •8. Сегнетоэлектрики
- •12. Керамика, особенности структуры и основные характеристики установочной и конденсаторной керамики.
- •2. Керамика
- •3.3.2. Конденсаторная керамика
- •14. Зонная структура металла, концентрация и подвижность носителей заряда в металле.
- •15. Эпитаксиальный рост пленок полупроводника.
- •16 Анализ p–n перехода, физика работы диода.
- •18. Ионная имплантация примесей в полупроводник.
- •22. Ионно-плазменное осаждение тонких пленок.
- •27.Усилительные каскады на биполярных и полевых транзисторах.
- •1.2 Эквивалентные схемы резисторного каскада на различных частотах
- •31 Ескд. Виды и комплектность конструкторской документации.
- •33. Конструктивные, технологические и эксплуатационные требования к эс
- •34. Стадии и этапы проектирования электронных средств и разработки технической документации.
- •35. Особенности проектирования эс
- •39. Унифицированные базовые конструкции и их влияние на качество и себестоимость.
- •IV. Унификация.
- •41. Защита рэс от атмосферных воздействий.
- •42. Защитные покрытия, их классификация и основные характеристики. Виды и материалы покрытий.
- •44. Обеспечение надежности рэс в процессе проектирования и производства рэс.
- •45. Статистический ряд и его обработка при управлении качеством
- •46. Международные стандарты по управлению качеством.
- •47. Математическая модель биполярного транзистора, ее основные элементы
- •50. Структура и состав сапр. Состав и возможности современных пакетов проектирования рэс.
- •54. Топологическое проектирование рэс (компоновка, размещение, трассировка), как задачи структурной оптимизации.
- •57. Амплитудная модуляция
- •58. Обобщенная трехточечная схема автогенератора
- •58. Транзисторные автогенераторы
- •1.5 Кварцевые автогенераторы
- •61. Физическая сущность процесса детектирования амплитудно-модулированных сигналов
- •В этом случае ток, протекающий через диод будет иметь им-
- •1.4 Схемы диодных детекторов Различают последовательную (рис. 2.5) и параллельную (рис. 2.6) схемы построения диодных детекторов.
- •1.5 Нелинейные искажения в детекторе больших амплитуд
- •1.6 Линейное детектирование в амплитудных детекторах
- •Тогда ток, протекающий в цепи диода, равен
- •Определим среднее значение тока в цепи диода
- •Пусть на вход детектора подан ам- сигнал
- •Определим коэффициент детектирования
- •С учетом выражений (2.6) и (2.4) запишем
- •64. Принцип факсимильной передачи сообщений.
- •65. Типизация технологических процессов. Типовые и групповые технологические процессы.
- •69.Типы и свойства нефольгированных и фольгированных диэлектриков, используемых для изготовления печатных плат.
- •70. Методы изготовления пп по субтрактивной технологии.
- •71. Методы изготовления пп по аддитивной технологии
- •74. Методы изготовления мпп
- •4.3.1.1. Метод металлизации сквозных отверстий
- •4.3.1.2. Метод открытых контактных площадок
- •4.3.1.3. Мпп с выступающими выводами
- •4.3.1.4. Метод попарного прессования
- •4.3.1.5. Метод послойного наращивания
- •4.3.2. Мпп прецизионные на фолыированном основании
- •4.3.4. Мпп прецизионные на нефольгированном основании
- •4.3.5. Мпп изготовленные методом пафос
- •75. Металлизация диэлектриков
- •77. Схемы технологических процессов
- •80. Методы и технология монтажной пайки.
- •81. Пайка одиночной и двойной волной припоя.
- •82. Конвекционная пайка. Температурный профиль пайки. Инфракрасная пайка.
- •83. Производственные погрешности, причины возникновения и законы распределения.
- •84. Задачи технологической подготовки рэс. Стандарты единой системы технологической подготовки производства и их классификация
- •Прогрессивных технологических процессов (тп),
- •Основные функции тпп. Задачи тпп, решаемые на стадиях проектирования
- •88. Изготовление деталей из керамических материалов.
- •Дополнительные операции.
- •89. Теплопроводность (кондуктивный перенос тепла)
- •3.1. Закон Фурье
- •3.2. Тепловые коэффициенты. Тепловые сопротивления. Метод электротепловых аналогий
- •3.3. Теплопередача цилиндрической, однородной стенки (трубы)
- •91. Конвективный теплообмен. Закон Ньютона-Рихмана.
- •92. Теплообмен излучением. Перенос тепла излучением.
- •Закон Ламберта -Этот закон определяет значение плотности потока излучения е в зависимости от его направления по отношению к равномерно излучающей поверхности тела.
- •93. Влагообмен в рэс Первый и второй закон Фика.
- •97. Классификация систем охлаждения рэа
- •11.2.1. Контактный способ охлаждения
- •11.2.2. Естественное воздушное охлаждение
- •11.2.3. Принудительное воздушное охлаждение
- •11.2.4. Жидкостные системы
12. Керамика, особенности структуры и основные характеристики установочной и конденсаторной керамики.
2. Керамика
Керамикой называют материалы, полученные при высокотемпературном спекании неорганических веществ, включая минералы и окислы. По структуре керамика является многофазной системой, состоящей из кристаллов, стеклофазы и газовой фазы.
Кристаллическая фаза представляет собой определенные химические соединения или твердые растворы этих соединений. Эта фаза составляет основу керамики и определяет основные свойства - механическую прочность, температурный коэффициент линейного расширения, термостойкость, диэлектрические параметры.
Стекловидная фаза находится в керамике в виде прослоек стекла, связывающих кристаллическую фазу. Обычно керамика содержит 1-10 % стеклофазы; увеличение ее содержания снижает механическую прочность, теплостойкость, гигроскопичность материала. Однако исходные стеклообразующие компоненты керамики (глинистые вещества) улучшают технологические свойства материала - степень пластичности керамической массы при формообразовании, снижает температуру спекания. Некоторые фазы керамики вообще не содержат стекловидной фазы.
Газовая фаза представляет собой газы, находящиеся в порах керамики; по этой фазе керамику подразделяют на плотную (без наличия пор), без открытых пор и пористую. Наличие пор обусловлено способом обработки керамической массы. Пористость приводит к снижению механической и электрической прочности изделий, вызывает повышенные диэлектрические потери вследствие ионизации газовых включений.
Метод изготовления изделий из керамики зависит от видов исходных компонентов, особенности конфигурации детали и масштаба производства. Для каждого конкретного случая процесс изготовления может несколько видоизменяться, но любая технологическая схема включает следующие основные операции: тонкое измельчение исходных компонентов и тщательное их смешивание; пластификация массы и образование формовочного полуфабриката; формообразование заготовок; сушка и спекание изделий (высокотемпературный обжиг). Обжиг керамических изделий является важным завершающим этапом технологического цикла. В процессе обжига, преимущественно в стадии нагрева, удаляется вода и происходит выгорание пластификатора, осуществляются химические реакции между частицами компонентов, вследствие чего образуются кристаллические и аморфные фазы. Механизм спекания сложен; как правило, он включает течение твердого вещества вследствие термически активируемых перемещений атомов компонентов. Температура, обеспечивающая спекание керамики, находится в пределах 1200-2000 оС и более в зависимости от видов исходных компонентов. В процессе обжига формируются заданные физические и электрические свойства материала. Поэтому процесс спекания происходит по строго заданному температурному и газовому режимам в окислительной, восстановительной или в нейтральной среде.
Неорганический характер керамических материалов придает им свойства, отличающие их от металлов и органических материалов. Керамические материалы стойки против высоких температур, воды и воздействия активных химических веществ, не горючи, не имеют остаточных деформаций и не стареют от длительной электрической и тепловой нагрузок, стойки к воздействию излучений высокой энергии. Они обладают хорошими диэлектрическими характеристиками при достаточной механической прочности - как и ситаллы, керамика относится к хрупким материалам.
Согласно ГОСТ 5458 «Материалы керамические радиотехнические» подразделяются на три типа А, Б, В и десять классов в зависимости от величины диэлектрической проницаемости, температурного коэффициента диэлектрической проницаемости, тангенса угла диэлектрических потерь и механической прочности. Керамические материалы типа А (классов I, II, III) – предназначенные для изготовления высокочастотных конденсаторов: материалы типа Б(IV, V) - низкочастотные для конденсаторов. Материалы типа В (VI-X классов) – высокочастотные для изготовления установочных деталей.
Керамика по назначению разделяется на
– конденсаторную керамику;
– установочную керамику;
В общем случае все керамические материалы разделяются на три типа А, Б, В.
А: I, II, III классы – конденсаторная ВЧ керамика
Б: IV, V классы – конденсаторная НЧ керамика
В: VI–X классы – установочная керамика