Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KSYe.docx
Скачиваний:
4
Добавлен:
17.08.2019
Размер:
77.93 Кб
Скачать

20) Строение и классификация звезд

Звезда́ — небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции[1]. Солнце — типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Химический состав звезд определяют по спектрам. Данные относятся к поверхностным слоям звезд, поскольку они непрозрачны. Оказалось, что 98 % звездного вещества — это водород и гелий, причем обычно водорода по массе в 2,7 раза больше (рис. 9.3). Строение звезды и источник ее энергии казались в какой-то степени выясненными, но возникли другие, не менее важные вопросы. Солнце, возраст которого оценивают в 5 млрд лет, бедно водородом и богато гелием, хотя за это время оно должно было истратить меньше водорода и образовать меньше гелия. Может быть, раньше оно было горячее и процессы шли скорее, но, по геологическим данным, количество солнечной энергии практически не менялось. Если бы водород уже в большей части выгорел, то в самом центре этой звезды могли начаться ядерные реакции и стали образовываться более тяжелые элементы. На Солнце и других звездах много элементов, более сложных, чем гелий. Получается — и они из самого центра Солнца?! Это противоречит гипотезе происхождения их из туманности, стало быть, тяжелые элементы должны появиться как-то иначе.

21) Эволюция вселенной

Космология — наука о строении и эволюции Вселенной. Она изучает свойства всей доступной для наблюдений Вселенной как единого целого. Общие представления о ее строении сложились в астрономии, но задачи космологии можно было решать лишь в XX в. Создание крупных телескопов, развитие фотографической и всеволновой астрономии, спектроскопии и других методов исследования позволили изучить распределение галактик в пространстве, их движения на огромных расстояниях (до 10 млрд св. лет). Мы теперь знаем, что окружены огромным и удивительным миром галактик и квазаров. Понять это было бы невозможно без общей теории относительности (ОТО) — математической базы современной космологии.

Эйнштейн обобщил закон тяготения Ньютона на случай сильных гравитационных полей. Изменились представления о пространстве и времени — они уже не были сценой для развития драмы истории Вселенной, а участвовали в самом процессе, и материя меняла свойства пространства и времени. Тяготеющие массы искривляют вокруг себя пространство-время, а оно воздействует на материю. Эйнштейн, объединив гравитацию и геометрию Рима-на, получил из средней плотности массы во Вселенной «абсолютные размеры Вселенной». Многие сомневаются в достаточности ОТО для понимания явлений Мегамира — ведь его масштабы превышают лабораторные условия на Земле в 1026 раз! Но изучение ближайших к нам галактик показало, что они состоят из тех же объектов — звезд, звездных скоплений, туманностей. Наука не может обойтись без построения рабочих моделей, независимо от изучаемого объекта. Модели уточняются, частично заменяются или отбрасываются. Можно построить цепочку объектов Мегамира: видимая Вселенная—галактика—Галактика—звезда—планета. Общие закономерности развития Вселенной строятся путем создания моделей.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]