Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-ле.doc
Скачиваний:
12
Добавлен:
15.08.2019
Размер:
4.18 Mб
Скачать

§ 3. Уравнения состояния (математические модели)

Уравнения неразрывности и движения (2.3) и (2.9), справедли­вые при непрерывных движениях любой сплошной среды, недоста­точны для описания поведения конкретной среды, так как их число меньше числа входящих в них неизвестных (перемещения, дефор­мации, скорости, напряжения и др.). Это понятно и с другой точки зрения. Различные реальные тела при одних и тех же внешних усло­виях ведут себя по-разному, что никак не отражено в общих уравне­ниях (2.3) и (2.9). Поэтому говорят, что такая система уравнений не замкнута. Построить замкнутую систему уравнений — значит построить математическую модель изучаемой сплошной среды. Для этого к имеющимся уравнениям необходимо присоединить так называемые механические уравнения состояния, которые выра­жают связь между кинематическими и динамическими величинами.

Механические свойства реальных тел довольно сложны, и поэтому уравнения состояния устанавливаются на основании опытных данных. В настоящее время для многих тел установлены определенные механические свойства и соответствующие им уравнения состояния.

В силу характерных особенностей различают математические модели твердых деформируемых тел, жидкостей и газов, хотя такое деление в определенном смысле условно.

С позиций механики сплошной среды твердые тела, жидкости и газы различаются по действию, оказываемому на них внешними силами, именно по неодинаковой сопротивляемости изменению формы. Газы практически не сопротивляются изменению формы, капельные жидкости сопротивляются изменению формы значи­тельно слабее, чем твердые тела. Кроме того, они различаются по характеру и степени проявления упругих, вязких и пластических свойств, их влиянию на изучаемый процесс.

Все это находит отражение в уравнениях состояния, т. е. в зависимостях между компонентами тензоров напряжений σij и деформаций εij (или скорости деформаций ξij) или компонентами девиаторов напряжений sij и деформации eij (или скорости деформаций λij). По существу эти уравнения являются классифи­катором разделов механики сплошной среды.

При формулировке инженерных задач не следует стремиться к использованию уравнений состояния, описывающих все детали механического поведения тела под воздействием внешних сил. Наоборот, целесообразно выбрать простейшую математическую модель, которая отражала бы лишь самые существенные свойства. В противном случае решить задачу будет либо чрезвычайно сложно, либо вовсе невозможно.

Приведем наиболее известные уравне­ния состояния, используемые в гидромеханике и механике твердо­го деформируемого тела.

Следует обратить внимание, что структурное сходство этих моделей придает общность исходным уравнениям механики сплошной среды, несмотря на существенное различие в физиче­ском поведении разных тел.

Раздел 2. (4) Уравнения механики сплошных сред

§ 1. Уравнение неразрывности

Один из фундаментальных законов ньютоновской механики материальных тел—это закон сохранения массы т любого индивидуального объема, т. е. объема, состоящего из одних и тех же частиц среды. Этот закон заключается в том, что для любого индивидуального объема т = const или в иной форме

В механике сплошных сред почти всегда вместо массы рассматривается плотность ρ.

Для малого объема верно равенство Δm ρΔV, а для конечного объема — равенство , где интеграл взят по подвижному индивидуальному объему V.

Тогда закон сохранения массы т принимает вид

(2.1)

Здесь не только плотность ρ — функция от координат точек пространства и времени, но и объем V зависит от t. Принимая это во внимание при вычислении производной в равенстве (2.1), несложно получить равенство

и так как оно справедливо для любого индивидуального объема, то получим первое основное дифференциальное уравнение механики сплошной среды

(2.2)

которое называется уравнением неразрывности в переменных Эйлера. Это уравнение накладывает ограничение на скорость точек сплошной среды и применяется при больших перемещениях точек среды.

Если воспользоваться формулой (1.5), то уравнение (2.2) можно переписать в виде

(2.3)

В цилиндрической системе координат (r, Θ, z) при осевой симметрии = (r, z) уравнение неразрывности принимает вид

Интересно, что уравнение (1.13) легко получить сразу, остава­ясь строго на точке зрения Эйлера. Для этого достаточно рассмотреть поток вектора ρ сквозь некоторую неподвижную замкнутую поверхность S произвольной формы. Нам известно [см. формулу (1.10)], что этот поток может быть представлен в виде

Он выражает массу среды, вытекающую за единицу времени из замкнутой поверхности S. Так как это повлечет за собой уменьшение плотности внутри S в единицу времени, равное (- /dt), и соответственно изменение массы среды внутри S, равное

то

Отсюда следует уравнение (2.3).

Для несжимаемой жидкости /dt (хотя ρ/∂t0), уравнение неразрывности (2.2) приобретает вид

div =

В этом случае поток скорости через любую неподвижную замкнутую поверхность равен нулю, т. е. объем втекающей жидкости равен объему вытекающей. Применяя это свойство к замкнутой поверхности, образованной трубкой тока и ее нормаль­ными сечениями, получим

v1S1=v2S2 .

Конечно, не существует сред, в строгом смысле действительно несжимаемых, однако весьма часто в инженерной практике предположение о постоянстве ρ приводит к значительному упрощению задачи и почти не вносит ошибки.

Для стационарных движений ∂ρ/∂t = O, уравнение неразрыв­ности получает вид

div ρ =0 или

Уравнение (2.2) или (2.3) справедливо для любой однородной сплошной среды, когда нет поглощений массы, химических реакций, внутренней диффузии и других процессов, связанных с влиянием окружающих тел. Однако оно легко обобщается для многокомпонентных смесей или многофазных сред с учетом различного взаимного влияния компонентов (или фаз).

Для этого всякий индивидуальный объем можно представить как совокупность п континуумов, каждый из которых имеет свою плотность ρ1, ρ2, ..., ρn и свою скорость , , …, . Если в смеси не происходит химических реакций и других процессов взаимных превращений, то для каждого компонента смеси должен выпол­няться закон сохранения массы

или

Если же в смеси происходят химические реакции, то массы компонентов тi могут меняться. Пусть γi — изменение массы тi i-го компонента смеси в единицу времени на единицу объема за счет химической реакции. Тогда уравнение неразрывности для компонента смеси можно записать в виде

или (2.4)

Согласно закону сохранения общей массы при химических реакциях имеем

(2.5)

Кроме п плотностей и п скоростей для компонентов смеси можно ввести одну плотность ρ и одну скорость смеси как целого.

Для этого достаточно просуммировать уравнения (2.4), учесть (2.5) и следующие равенства

В результате уравнение неразрывности примет обычный вид (2.3) относительно средних характеристик среды.

Все сказанное остается в силе, если вместо химических реакций в многокомпонентных смесях рассматриваются процессы взаимных поглощений (или выделений) в многофазных средах. В этом случае в формуле (2.4) γi — интенсивность поглощения i-той фазы среды.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]