Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ НА ГОСы (все ответы).doc
Скачиваний:
20
Добавлен:
14.08.2019
Размер:
1.93 Mб
Скачать

2. Параллельная обработка процессов, проблемы критических участков, взаимоисключения. Синхронизация параллельных процессов на низком уровне. (спо)

Параллельными называются процессы, которые существуют одновременно. Два параллельных процесса могут быть независимыми либо взаимодействующими

Независимыми или асинхронными являются процессы, множества переменных которых не пересекаются. Под переменными в этом случае понимаются файлы данных, а также области оперативной памяти, сопоставленные определенным в программе и промежуточным переменным. Независимые процессы не влияют на результаты работы друг друга, т.к. не могут изменить значения переменных другого независимого процесса. Они могут явиться причиной задержек исполнения других процессов, т.к. вынуждены разделять ресурсы системы. Асинхронным параллельным процессам требуется периодически синхронизироваться и взаимодействовать друг с другом.Взаимодействующие процессы совместно используют некоторые переменные, и выполнение одного процесса может повлиять на выполнение другого.

Проблемы критических участков. Взаимоисключения

При выполнении параллельных процессов может возникать проблема, когда каждый процесс, обращающийся к разделяемым данным, исключает для всех других процессов возможность одновременного с ним обращения к этим данным - это называется взаимоисключением (mutual exclusion).

Ресурс, который допускает обслуживание только одного пользователя за один раз, называется критическим ресурсом. Если несколько процессов хотят пользоваться критическим ресурсом в режиме разделения времени, им следует синхронизировать свои действия таким образом, чтобы этот ресурс всегда находился в распоряжении не более чем одного их них.

Для каждого процесса могут быть выделены участки, в которых происходит обращение к критическим ресурсам, они называются критическими участками. Рассмотрим пример, поясняющий выше сказанное.

Пример. Пусть два процесса X и Y разделяют переменную СЧЕТ. Если оба процесса попытаются увеличить СЧЕТ на 1 одновременно, то окончательное значение этой переменной может оказаться неверным. Рассмотрим следующую последовательность событий:

1.процесс X запоминает значение переменной СЧЕТ в некоторой локальной переменной СЧЕТ_Х;

2.процесс Y запоминает значение переменной СЧЕТ в некоторой локальной переменной СЧЕТ_Y;

3.процесс Х увеличивает значение СЧЕТ_Х на 1 и записывает его в СЧЕТ;

4.процесс Y увеличивает значение СЧЕТ_Y на 1 и записывает его в СЧЕТ.

Заметим, что хотя каждый процесс увеличил значение СЧЕТ на 1, ее окончательное значение увеличилось только на 1, а не на 2. Чтобы избежать таких нежелательных явлений, увеличение разделяемой переменной СЧЕТ следует рассматривать как критический участок.

Рассмотрим несколько решений проблем синхронизации критических участков

Синхронизация параллельных процессов на низком уровне

Большинство приемов, применяемых для синхронизации процессов, тесно связаны с аппаратными средствами. Это блокировка памяти, операция “проверка и установка” и семафоры.

Блокировка памяти

Взаимоисключения могут быть реализованы аппаратно, если сделать операции над памятью неделимыми. То есть, если каждый из процессов пытается поместить какие-либо значения в одну и ту же ячейку, то спор разрешается аппаратурой: если одному процессу разрешается выполнить операцию засылки немедленно, то другому приходится ждать пока первый не закончит операцию - такое разрешение спора и называется блокировкой памяти( storage interlock).

Механизм блокировки памяти предотвращает одновременный доступ к разделяемой переменной, но не предотвращает чередование доступа. Таким образом, если критические интервалы исчерпываются одной командой обращения к памяти, данного средства может быть достаточно для непосредственной реализации взаимного исключения. Если же критические секции требуют более одного обращения к памяти, то задача становится сложной. Рассмотрим различные попытки использования механизма блокировки памяти для организации взаимного исключения при выполнении критических интервалов.

Семафоры

Концепция использования семафоров для реализации взаимоисключений предложена Дейкстрой.

Семафор или общий семафор (semaphore) - это целая переменная, значение которой можно опрашивать и менять только при помощи специальных неделимых (как команда testandset) операций P и V. Эти операции являются примитивами относительно семафора, который указывается в качестве параметра операций. Здесь семафор выполняет роль вспомогательного критического ресурса, т.к. операции P и V неделимы при своем выполнении и взаимно исключают друг друга.

Двоичный семафор может принимать только значения 0 или 1. Считающий семафор может принимать целые неотрицательные значения.

Операция Р над семафором S записывается как P(S), алгоритм ее выполнения следующий:

if S>0 then S:=S-1 else <ожидать на S>

Операция V над семафором S , V(S), имеет следующий алгоритм выполнения:

if <один или несколько процессов ожидают на S>

then <разрешить одному из этих процессов продолжить работу>

else S:=S+1

Мьютексы

Одним из вариантов семафорных механизмов для организации взаимного исключения являются мьютексы. Термин mutex произошел от англ. mutual exclusion semaphore, что переводится как семафор взаимного исключения. Мьютексы реализованы во многих ОС, их основное назначение – организация взаимного исключения для задач из одного и того же или разных процессов.

Мьютексы – это простейшие двоичные семафоры, которые могут находиться в одном из двух состояний – отмеченном или неотмеченном (открыт или закрыт). Если какая-либо задача, принадлежащая любому процессу, становится владельцем мьютекса, то он переводится в неотмеченное состояние. Если задача освобождает мьютекс, его состояние становится отмеченным.

Организация последовательного доступа к ресурсам с использованием мьютексов становится проще, т.к. в каждый момент только одна задача может владеть этим объектом. Для того чтобы объект мьютекс стал доступен задачам, принадлежащим разным процессам, при создании ему необходимо присвоить имя, потом это имя нужно передать «по наследству» задачам, которые должны его использовать для взаимодействия. Для этого вводятся специальные системные вызовы, в которых указываются начальное значение мьютекса, его имя и, возможно, атрибуты защиты. Если начальное значение мьютекса равно true, то считается, что задача, создающая этот объект, будет им сразу владеть. Можно указать в качестве начального значения false – в этом случае мьютекс не принадлежит ни к одной из задач и только специальным обращением к нему можно изменить его состояние