
- •Isbn 5-89502-310-х (мпси) isbn 5-89349-361-3 (Флинта)
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 9
- •Глава 10
- •Глава 12
- •Глава 13
- •Глава 1 понятие измерения
- •1.1. Измерительные шкалы
- •1.2. Номинативная шкала (шкала наименований)
- •Глава 1. Понятие измерения
- •1.3. Порядковая (ранговая, ординарная) шкала
- •1.3.2. Проверка правильности ранжирования
- •1.3.3. Случай одинаковых рангов
- •1.5. Шкала отношений
- •Глава 2
- •2.1. Полное исследование
- •2.2. Выборочное исследование
- •2.3. Зависимые и независимые выборки
- •2.4. Требования к выборке
- •2.5. Репрезентативность выборки
- •2.6. Формирование и объем репрезентативной выборки
- •Глава 3 формы учета результатов измерений
- •3.1. Таблицы
- •3.1. Таблицы
- •3.2. Статистические ряды
- •3.3. Понятие распределения и гистограммы
- •Глава 3. Формы учета результатов измерений
- •Глава 4
- •4.1. Мода
- •4.2. Медиана
- •4.3. Среднее арифметическое
- •4.4. Разброс выборки
- •4.5. Дисперсия
- •4.6. Степень свободы
- •4.7. Понятие нормального распределения
- •Глава 5
- •5.1. Проверка статистических гипотез
- •5.2. Нулевая и альтернативная гипотезы
- •5.3. Понятие уровня статистической значимости
- •5.4. Этапы принятия статистического решения
- •5.5, Классификация психологических задач, решаемых с помощью статистических методов
- •Глава 6 статистические критерии различий
- •6.1.1. Параметрические и непараметрические критерии
- •6.1.2. Рекомендации к выбору критерия различий
- •6.2. Непараметрические критерии для связных
- •6.2.1. Критерий знаков g
- •6.2.3. Критерий Фридмана
- •6.2.4. Критерий Пейджа
- •6.2.5. Критерий Макнамары
- •Глава 7
- •7.1. Критерий u Вилкоксона—Манна—Уитни
- •7.1.1. Первый способ расчета по критерию u
- •7.1.2. Второй способ расчета по критерию u
- •7.2. Критерий q Розенбаума
- •Глава 8
- •8.1. Критерий хи-квадрат
- •8.1.1. Сравнение эмпирического распределения с теоретическим
- •8.1.2. Сравнение двух экспериментальных распределений
- •8.1.3. Использование критерия хи-квадрат для сравнения показателей внутри одной выборки
- •8.2, Критерий Колмогорова-Смирнова
- •8.3. Критерий Фишера — φ
- •8.3.1. Сравнение двух выборок по качественно определенному признаку
- •8.3.2. Сравнение двух выборок по количественно определенному признаку
- •Глава 9
- •9.1.1. Случай несвязных выборок
- •9.1.2. Случай связных выборок
- •Глава 10 введение в дисперсионный анализ anova
- •10.1. Однофакторный дисперсионный анализ
- •10.2.1. Критерий Линка и Уоллеса
- •10.2.2. Критерий Немени
- •Глава 11 корреляционный анализ
- •11.1. Понятие корреляционной связи
- •11.2. Коэффициент корреляции Пирсона
- •11.3. Коэффициент корреляции рангов Спирмена
- •11.3.1. Случай одинаковых (равных) рангов
- •11.4. Расчет уровней значимости коэффициентов корреляции
- •11.5.1. Второй способ вычисления коэффициента «φ»
- •11.7. Бисериальный коэффициент корреляции
- •11.8. Рангово-бисериальный коэффициент корреляции
- •11.9. Корреляционное отношение Пирсона η
- •11.10. Множественная корреляция
- •11.11. Частная корреляция
- •Глава 12
- •12.1. Линейная регрессия
- •12.2. Множественная линейная регрессия
- •12.3. Оценка уровней значимости коэффициентов регрессионного уравнения
- •12.4. Нелинейная регрессия
- •Глава 13 факторный анализ
- •13.1. Основные понятия факторного анализа
- •13. Факторный анализ
- •Глава 13. Факторный анализ
- •13.1. Основные понятия факторного анализа
- •13.2. Условия применения факторного анализа
- •13.3. Приемы для определения числа факторов
- •13.5. Использование факторного анализа в психологии
- •Глава I. Теоретические основы агрессивности и тревожности личности.
12.4. Нелинейная регрессия
Полученный в предыдущем разделе результат несколько обескураживает: мы получили, что оба уравнения регрессии (12.15) и (12.17) неадекватны экспериментальным данным. Последнее произошло потому, что оба эти уравнения характеризуют линейную связь между признаками, а мы в разделе 11.9 показали, что между переменными X и Y имеется значимая криволинейная зависимость. Иными словами, между переменными Х и Y в этой задаче необходимо искать не линейные, а криволинейные связи. Проделаем это с использованием пакета «Стадия 6.0» (разработка А. П. Кулаичева, регистрационный номер 1205).
Задача 12.2. Психолог хочет подобрать регрессионную модель, адекватную экспериментальным данным, полученным в задаче 11.9.
Решение. Эта задача решается простым перебором моделей криволинейной регрессии предлагаемых в
272
статистическом пакете Стадия. Пакет организован таким образом, что в электронную таблицу, которая является исходной для дальнейшей работы, заносятся экспериментальные данные в виде первого столбца для переменной А'и второго столбца для переменной Y. Затем в основном меню выбирается раздел Статистики, в нем подраздел — регрессионный анализ, в этом подразделе вновь подраздел -- криволинейная регрессия. В последнем меню даны формулы (модели) различных видов криволинейной регрессии, согласно которым можно вычислять соответствующие регрессионные коэффициенты и сразу же проверять их на значимость. Ниже рассмотрим только несколько примеров работы с готовыми моделями (формулами) криволинейной регрессии.
1. Первая модель — экспонента. Ее формула такова:
При расчете с помощью статпакета получаем а0 = 1 и a1 = 0,022.
Расчет уровня значимости для a1 дал величину Р = 0,535. Очевидно, что полученная величина незначима. Следовательно, данная регрессионная модель неадекватна экспериментальным данным.
2. Вторая модель — степенная. Ее формула такова:
При подсчете а0 , = - 5,29, а1 = 7,02 и а2 = 0,0987. Уровень значимости для а1 — Р = 7,02 и для а2 — Р = 0,991. Очевидно, что ни один из коэффициентов не значим.
Вывод — данная модель неадекватна экспериментальным
данным.
3. Третья модель — полином. Ее формула такова:
При подсчете а0 = - 29,8, а1 = 7,28, а2 = - 0,488 и а3 = 0,0103. Уровень значимости для а1 - Р = 0,143, для а2 — Р = 0,2 и для а3 — P = 0,272.
273
Вывод — данная модель неадекватна экспериментальным данным.
4. Четвертая модель — парабола. Ее формула такова:
При подсчете а0 = - 9,88, а1 = 2,24 и а2 = - 0,0839 Уровень значимости для а1 — Р = 0,0186, для а2— Р = 0,0201. Оба регрессионных коэффициента оказались значимыми. Следовательно, задача решена -- мы выявили форму криволинейной зависимости между успешностью решения третьего субтеста Векслера и уровнем знаний по алгебре — это зависимость параболического вида. Этот результат подтверждает вывод, полученный при решении задачи 11.9 о наличии криволинейной зависимости между переменными. Подчеркнем, что именно с помощью криволинейной регрессии был получен точный вид зависимости между изучаемыми переменными.
274