Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция №06_Строение и спектры молекул.doc
Скачиваний:
5
Добавлен:
10.08.2019
Размер:
468.48 Кб
Скачать

Основные виды межатомной связи

Различают два типа связи атомов: ионную (или гетерополярную) и ковалентную (или гомеополярную).

Ионная связь имеет место в тех случаях, когда электроны в молекуле располагаются таким образом, что около одного из ядер образуется избыток, а около другого – их недостаток. Таким образом, молекула как бы состоит из двух ионов противоположных знаков, притягивающихся друг к другу. Примером молекул с ионной связью могут служить NaCl, KCl, RbF, CsJ и т.д. образовавшиеся при соединении атомов элементов I-ой и VII-ой групп периодической системы Менделеева. При этом атом, присоединивший к себе один или несколько электронов, приобретает отрицательный заряд и становится отрицательным ионом, а атом, который отдает соответствующее число электронов, превращается в положительный ион. Общая сумма положительных и отрицательных зарядов ионов равна нулю. Поэтому ионные молекулы электрически нейтральны. Силы, обеспечивающие устойчивость молекулы, имеют электрическую природу.

Чтобы ионная связь осуществилась, необходимо, чтобы энергия отрыва электрона, то есть работа создания положительного иона, была бы меньше суммы энергии, выделяющейся при образовании отрицательных ионов и энергии их взаимного притяжения.

Вполне очевидно, что образование положительного иона из нейтрального атома требует меньше всего работы в том случае, когда происходит отрыв электронов находящихся в начавшей застраиваться электронной оболочке.

С другой стороны, наибольшая энергия выделяется при присоединении электрона к атомам галоидов, которым не хватает одного электрона до заполнения электронной оболочки. Поэтому ионная связь образуется при такой передаче электронов, которая ведет к созданию у образовавшихся ионов заполненных электронных оболочек.

Другой тип связи – ковалентная связь.

При образовании молекул, состоящих из одинаковых атомов, возникновение разноименно заряженных ионов невозможно. Следовательно, невозможна ионная связь. Однако в природе существуют вещества, молекулы которых образованы из одинаковых атомов Н2 , О2, N2 и т.д. Связь в веществах такого типа называется ковалентной или гомеополярной (гомео – разный [греч.] ). Кроме этого, ковалентная связь наблюдается и у молекул с разными атомами: фтористый водород HF, окись азота NO, метан CH4 и т.д.

Природу ковалентной связи можно объяснить только на основе квантовой механики. В основу квантовомеханического объяснения положена волновая природа электрона. Волновая функция внешних электронов атома не обрывается резко при увеличении расстояния от центра атома, а постепенно убывает. При сближении атомов размытые электронные облака внешних электронов частично перекрываются, что приводит к их деформации. Точный расчет изменения состояния электронов требует решения волнового уравнения Шредингера для системы всех участвующих во взаимодействии частиц. Сложность и громоздкость этого пути вынуждают ограничиться здесь лишь качественным рассмотрением явлений.

В простейшем случае s-состояния электрона электронное облако представляет собой сферу некоторого радиуса. Если оба электрона в ковалентной молекуле обмениваются местами так, что электрон 1, ранее принадлежавший ядру «а», перейдет на место электрона 2, принадлежавшего ядру «b», а электрон 2 совершит обратный переход, то в состоянии ковалентной молекулы ничего не изменится.

Принцип Паули допускает существование двух электронов в одном состоянии с противоположно направленными спинами. Слияние областей, где могут находиться оба электрона, означает возникновение между ними особого квантовомеханического обменного взаимодействия. При этом каждый из электронов в молекуле может принадлежать попеременно то одному, то другому ядру.

Как показывает расчет, обменная энергия молекулы положительна, если спины взаимодействующих электронов параллельны, и отрицательна – если они не параллельны.

Итак, ковалентный тип связи обеспечивается парой электронов с противоположными спинами. Если в ионной связи речь шла о передаче электронов из одного атома другому, то здесь связь осуществляется обобщением электронов и созданием общего пространства для их движения.