- •1. Числовые последовательности. Ограниченные и неограниченные множества. Верхние и нижние грани множества.
- •2. Бесконечно малые и бесконечно большие последовательности. Свойства бесконечно малых последовательностей. Теорема связи между бесконечно большими и бесконечно малыми последовательностями.
- •3. Предел числовой последовательности Теорема о единственности предела. Критерии Коши.
- •4. Сходящиеся числовые последовательности. Теорема об ограниченности сходящейся числовой последовательности. Свойства сходящихся числовых последовательностей.
- •5. Теорема о предельном переходе в неравенствах. Теоремы о промежуточной последовательности.
- •6. Монотонные последовательности. Теорема о сходимости монотонной ограниченной последовательности.
- •7. Теорема о вложенных отрезках.
- •8. Число Эйлера (“e”).
- •9. Понятие функции, способы ее задания. Классификация функций.
- •10. Два определения предела функции в точке. Теорема об эквивалентности определений пределов функции в точке.
- •11.Теорема о пределе суммы, произведения, и частной функции. Предел функции на бесконечности. Теорема об ограниченности функции, имеющей предел.
- •12. Односторонние пределы. Теоремы о переходе к пределу в неравенствах.
- •13. Теорема о 1-м замечательном пределе.
- •14.Теоремы о 2-м замечательном пределе.
- •15. Бесконечно малые и бесконечно большие функции, сравнение бесконечно малых функций, эквивалентные бесконечно малые. Связь между бесконечно большими и бесконечно малыми
- •16. Непрерывность функции в точке. Примеры. Свойства непрерывных в точке функций. Теорема о непрерывности сложной функции.
- •17. Теорема о непрерывности обратной функции. Критерий непрерывности функции в точке. Односторонняя непрерывность.
- •18.Бесконечные пределы ф-ии.
- •19. Понятие непрерывности ф-ии.
- •20. Общие свойства ф-ии, непрерывной в точке.
- •Непрерывность и арифметические операции
- •Непрерывность сложной ф-ии.
- •21. Непрерывность ф-ии на множестве.
- •22. Характеристика точек разрыва ф-ии.
- •23. Односторонняя непрерывность ф-ии.
- •Свойства ф-й, непрерывных на отрезке
- •24. Дифференциальное счисление.
- •25. Определение призводной ф-ии в точке.
- •26. Степень ф-ии с вещественным показателем.
- •27. Геометрический смысл производной.
- •28. Дифференцируемость ф-ии.
- •29. Производная суммы, произведения, частного.
- •31. Производная от обратной ф-ии.
- •32. Производная от обратной ф-ии.
- •Производная от сложной ф-ии.
- •Односторонние производные.
- •33. Производная от параметрически заданной ф-ии.
- •34. Производные высших порядков.
- •35. Теоремы о дифф. Ф-ях.
- •36. Приложение производной к исследованию ф-ий.
- •37. Исследование ф-ии на выпуклость графика.
- •38. Асимптоты графика ф-ии.
- •Общая схема исследования ф-ий
- •39. Приложение производной к вычислению пределов.
- •40. Дифференциал ф-ии.
36. Приложение производной к исследованию ф-ий.
1. Исследование на монотонность.
Пусть дифф. на , тогда справедливо:
Ф-ия возрастает на
на
.Ф-ия не убывает на
на
.Ф-ия постоянна на
на
.Ф-ия не возрастает на
на
.Ф-ия убывает на
на
.
2. Исследование на экстремум.
Df:
т. х0
называется точкой локального минимума,
если ф-ия непрерывна в этой точке и
существует такая окрестность х0
, что для любого х
**************************
37. Исследование ф-ии на выпуклость графика.
**************************
Df: График ф-ии на направлен выпуклостью вниз (вогнутый), если он расположен выше касательной, проведенной в любой точке , а график ф-ии - выпуклый, если он расположен ниже касательной, проведенной в любой точке .
Df2: Точка х0 , в которой непрерывна, называется точкой перегиба, если она отделяет интервал выпуклости от интервала вогнутости.
Достаточные условия выпуклости ф-ии на интервале.
Пусть ф-ия
дважды дифф. на
и
сохраняет
на нем свой знак, то:
,
то график на
-
вогнутый.
,
то график на
-
выпуклый.
38. Асимптоты графика ф-ии.
В некоторых случаях, когда график ф-ии имеет бесконечные ветви, оказывается, что при удалении точки вдоль ветви к бесконечности, она неограниченно стремится к некоторой прямой. Такие прямые называют асимптотами.
.Вертикальные
асимптоты – прямая
называется вертикальной асимптотой
графика ф-ии
в точке b
, если хотя бы один из разносторонних
пределов равен бесконечности.
Если ф-ия задана дробно-рациональным выражением, то вертикальная асимптота появляется в тех точках, когда знаменатель равен нулю, а числитель не равен нулю.
********************
Наклонная асимптота
– прямая
наклонная асимптота ф-ии
,
если эта ф-ия представлена в виде
Необходимый и достаточный признак существования наклонной асимптоты:
Для существования наклонной асимптоты к графику ф-ии необходимо и достаточно существование конечных пределов:
Доказательство: Пусть:
Пусть:
Следовательно существует асимптота.
Общая схема исследования ф-ий
По ф-ии
D(f)
E(f)
Непрерывность в области определения
Четность, нечетность.
Переодичность
Асимптоты
По первой производной
Экстремумы
Интервалы монотонности
По второй производной
Интервалы выпуклостей
Точки перегиба
Построение графика ф-ии.
39. Приложение производной к вычислению пределов.
(Правило Лопиталя).
Пусть:
Ф-ии и дифф. в проколотой окрестности точки х0
то справедливо:
Доказательство:
1. Доопределим ф-ии
и
в
точке х0
так, чтобы они стали непрерывными, т.е.
ф-ия
непрерывна на всей окрестности
2.
применим
т.Коши на интервале
или
, где ζ
лежит между х
и х0
следовательно
Zm:Если производная ф-ии удовлетворяет правилу Лопиталя, то можно вычислять последнюю несколько раз (2,3,4…), пока она удовлетворяет условию.Правило Лопиталя применимо, когда x0 – бесконечно удаленная точка.
