Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпор другие.docx
Скачиваний:
7
Добавлен:
05.08.2019
Размер:
367.03 Кб
Скачать

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

[править]Связь с электропроводностью

Связь коэффициента теплопроводности K с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:

где k — постоянная Больцманаe — заряд электрона.

[править]Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов - у ксенона).

Диффузия (от лат. diffusio - распространение, растекание, рассеивание), перенос частиц разной природы, обусловленный хаотическим тепловым движением молекул (атомов) в одно- или многокомпонентных газовых либо конденсирированных средах. Такой перенос осуществляется при наличии градиента концентрации частиц или при его отсутствии; в последнем случае процесс называется самодиффузией (см. ниже). Различают диффузию коллоидных частиц (т. наз. броуновская диффузия), в твердых телах, молекулярную, нейтронов, носителей заряда в полупроводниках и др.; о переносе частиц в движущейся с определенной скоростью среде (конвективная диффузия) см. Массообмен, Переноса процессы, о диффузии частиц в турбулентных потоках см. Турбулентная диффузия. Все указанные виды диффузии описываются одними и теми же феноменологическими соотношениями. 

Основные понятия. Главной характеристикой диффузии служит плотность диффузионного потока J - количество вещества, переносимого в единицу времени через единицу площади поверхности, перпендикулярной направлению переноса. Если в среде, где отсутствуют градиенты температуры, давления, электрического потенциала и др., имеется градиент концентрации с(х, t), характеризующий ее изменение на единицу длины в направлении х (одномерный случай) в момент времени t, то в изотропной покоящейся среде

J = -D(/), (1)

где D - коэффициент диффузии (м2/с); знак "минус" указывает на направление потока от больших концентраций к меньшим. Пространственно-временное распределение концентрации:

Уравнения (1) и (2) называются первым и вторым законами Фика. Трехмерная диффузия [с (х, у, z; t)] описывается уравнениями:

J = -D grad c (3)

где J - вектор плотности диффузионного потока, grad - градиент поля концентрации. Перенос частиц в среде осуществляется как последовательность их случайных перемещений, причем абсолютная величина и направление каждого из них не зависят от предыдущих. Диффузионное движение в среде каждой частицы обычно характеризуют среднеквадратичным смещением L2 от исходного положения за время t. Для трехмерного пространства справедливо первое соотношение Эйнштейна: L2 = GDt. Таким образом, параметр D характеризует эффективность воздействия среды на частицы. 

В случае диффузии в многокомпонентных смесях в отсутствие градиентов давления и температуры (изобарно-изотермическая диффузия) для упрощения описания взаимного проникновения компонентов при наличии градиентов их концентраций вводят так называемые коэффициенты взаимной диффузии. Например, при одномерной диффузии в двухкомпонентной системе выражение для диффузионного потока одного из компонентов принимает вид:

где c1 + с2 = const, D12 = D21 - коэффициент взаимной диффузии обоих компонентов. 

В результате неравномерного нагревания среды под влиянием градиента температуры происходит перенос компонентов газовых или жидких смесей - термодиффузия (в растворах - эффект Соре). Если между отдельными частями системы поддерживается постоянная разность температур, то вследствие термодиффузии в объеме смеси появляются градиенты концентрации компонентов, что инициирует обычную диффузию. Последняя в стационарном состоянии (при отсутствии потока вещества) уравновешивает термодиффузию, и в системе возникает разность концентраций компонентов. Это влияние лежит в основе одного из методов разделения изотопов, а также термодиффузионного разделения нефтяных фракций. 

При внешнем воздействии на систему градиента давления или гравитационного поля возникает бародиффузия. Примеры: диффузионное осаждение мелких взвешенных частиц при столкновении их с молекулами газа (см.Пылеулавливание); баромембранные процессы - обратный осмос, микро- и ультрафильтрация (см. Мембранные процессы разделения Осмос). Действие на систему внешнего электрического поля вызывает направленный перенос заряженных частиц - электродиффузию. Примеры: электромембранные процессы, например, электродиализ - разделение под действием электрического тока ионизированных соединений вследствие избирательного переноса ионов через ионообменные мембраны; диффузия носителей заряда - перемещение электронов проводимости и дырок, обусловленное неоднородностями их концентрации в полупроводниках. 

Математически законы Фика аналогичны уравнениям теплопроводности Фурье. В основе такой аналогии лежат общие закономерности необратимых процессов перераспределения интенсивных параметров состояния (концентрации, температуры, давления и др.) между различными частями какой-либо системы при стремлении ее к термодинамическому равновесию. При малых отклонениях системы от него эти закономерности описываются линейными соотношениями между потоками физ. величин и термодинамическими силами, т. е. градиентами параметров, вызывающими указанные отклонения. В частности, диффузионный поток частиц данного типа, помимо градиентов концентраций частиц каждого типа, может при соответствующих условиях в большей степени определяться градиентами других интенсивных параметров и внешними силами. В общем виде связь между потоками и силами описывается феноменологическими уравнениями термодинамики необратимых процессов. Например, в случае электронейтральной бинарной газовой системы при наличии градиента температуры dТ/dх, градиента давления dр/dхи градиента электрич. потенциала dj/dx выражение для диффузионного потока частиц с зарядом qi в одномерном случае принимает вид:

где с - общее число частиц смеси в единице объема; ni = ci/c -относит. доля частиц i-гo компонента (i = 1, 2); Dp, D- коэф. баро- и термодиффузии; mi = qiD/kТ (соотношение Нернста - Эйнштейна) - подвижность частиц 1-го компонента в электрич. поле; k - постоянная Больцмана; T - абсолютная температура. Например, в бинарной газовой смеси при постоянном давлении и отсутствии внешних сил полный диффузионный поток

При отсутствии потока (J = 0) распределение концентраций находят по формуле:

где kT = DT/D12. Коэффициент DT в значительной степени зависит от межмолекулярного взаимодействия, поэтому его изучение позволяет исследовать межмолекулярные силы в различных средах. 

Одновременно с диффузионным переносом частиц посторонних веществ (примесей), неравномерно распределенных в какой-либо среде, происходит самодиффузия - случайное перемещение частиц самой среды, химический состав которой при этом не изменяется. Данный процесс, наблюдаемый даже в отсутствие в системе термодинамических сил, описывается уравнениями Фика, в которых D заменен параметром Dc, называемым коэффициентом самодиффузии. Эффекты самодиффузии могут приводить к сращиванию двух пришлифованных образцов одного и того же вещества, спеканию порошков при пропускании через них электрического тока, к растягиванию тел под действием подвешенного к ним груза (диффузионная ползучесть материалов) и т.д. 

При взаимной диффузии в твердых телах поток атомов одного сорта может превосходить идущий в обратном направлении поток атомов другого сорта, если для нескомпенсированных вакансий (а возможно, и для нескомпенсированных атомов) имеются стоки. При этом в кристалле появляются поры, приводящие к нарушению устойчивости кристаллической решетки как механической системы и, вследствие этого, к смещению кристаллических плоскостей как целого (эффект Киркиндаля). В частности, при взаимной диффузии в бинарных металлических системах наблюдается перемещение "инертных" меток, например, тонких тугоплавких проволочек из Мо или W диаметром несколько мкм, внесенных в зону диффузии. 

Скорость диффузионного массопереноса в различных веществах или материалах иногда удобно характеризовать константой их проницаемости П = Dg, где g - константа Генри, определяющая равновесную растворимость переносимого компонента. В частности, выражение для стационарного потока молекул газа, диффундирующих через разделительную перегородку (мембрану) толщиной d, имеет вид: J = ПgDр/d, где Dр - разность парциальных давлений разделяемых компонентов газовой смеси по обе стороны перегородки. 

Коэффициенты диффузии существенно различаются для диффузионных процессов в газовых и конденсированных (жидких и твердых) средах: наиболее быстро перенос частиц происходит в газах (порядка 10-4 м2/с при нормальных температуре и давлении), медленнее - в жидкостях (порядка 10-9), еще медленнее - в твердых телах (порядка 10-12). Проиллюстрируем указанные выводы на примерах молекулярной диффузии.

Диффузия в газовых средах. Для оценки D в качестве характерного (среднего) смещения частиц принимают длину свободного пробега молекул l = ut, где и и t - средние скорость движения частиц и время между их столкновениями. В соответствии с первым соотношением Эйнштейна l2t-1; более точно = 1/3 lu. Коэффициент диффузии обратно пропорционален давлению р газа, поскольку l ~ 1/р; с повышением температуры Т (при постоянном объеме) D возрастает пропорционально T1/2, т. к. ; с увеличением молярной массы газа D снижается. Согласно кинетической теории газов, коэффициенты взаимной диффузии газов А и В в бинарной смеси (табл. 1)

где р - полное давление в системе, тA и тмассы газов, sи s- параметры потенциала Леннард-Джонса (см., например, Абсорбция).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]