Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
931.doc
Скачиваний:
5
Добавлен:
03.08.2019
Размер:
2.79 Mб
Скачать

12 Вопрос.

Общее решение неоднородной системы.

Сон (общ. неоднор.) = Сооч (частное)

АХ=В (неоднородная система) ; АХ= 0

(АСоо) +АСч = АСч = В, т.к. (АСоо) = 0

Сон= α1C12C2 +.. + αn-r Cn-r + Сч

Метод Гаусса.

Это метод последовательных исключений неизвестных (переменных) – заключается в том, что с помощью элементарных преобразований, исходная система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находят все остальные переменные.

Пусть а≠0 (если это не так, то перестановкой уравнений добиваются этого).

1)исключаем переменную х1 из второго, третьего…n-ого уравнения, умножая первое уравнение на подходящие числа и прибавляя полученные результаты ко 2-ому, 3-ему…n-ому уравнению, тогда получаем:

Получаем систему равносильную исходной.

2)исключаем переменную х2

3) исключаем переменную х3 и т.д.

Продолжая процесс последовательного исключения переменных х45...хr-1 получим для (r-1)-ого шага.

r- ранг.

Число ноль последних n-r в уравнениях означают, что их левая часть имеет вид: 0х1 +0х2+..+0хn

Если хотя бы одно из чисел вr+1, вr+2… не равны нулю, то соответственное равенство противоречиво и система (1) не совместна. Таким образом, для всякой совместной системы эта вr+1 … вm равна нулю.

Последнее n-r уравнение в системе (1;r-1) являются тождествами и их можно не принимать во внимание.

Возможны два случая:

а)число уравнений системы (1;r-1) равно числу неизвестных, т.е. r=n (в этом случае система имеет треугольный вид).

б)r<n, в этом случае система (1;r-1) имеет ступенчатый вид.

Переход от системы (1) к равносильной ей системе (1;r-1) называется прямым ходом метода Гаусса.

О нахождение переменной из системы (1;r-1) – обратным ходом метода Гаусса.

Преобразования Гаусса удобно проводить, осуществляя их не с уравнениями, а с расширенной матрицей их коэффициентов.

13 Вопрос.

Подобные матрицы.

Будем рассматривать только квадратные матрицы порядка n/

Матрица А называется подобной матрице В (А~В), если существует такая неособенная матрица S, что А=S-1BS.

Свойства подобных матриц.

1)Матрица А подобна сама себе. (А~А)

Если S=Е, тогда ЕАЕ=Е-1АЕ=А

2)Если А~В, то В~А

Если А=S-1ВS => SAS-1= (SS-1)B(SS-1)=B

3)Если А~В и одновременно В~С, то А~С

Дано, что А=S1-1BS1, и В=S2-1CS2 => A= (S1-1 S2-1) C(S2 S1) = (S2 S1)-1C(S2 S1) = S3-1CS3, где S3 = S2S1

4)Определители подобных матриц равны.

Дано, что А~В, надо доказать, что detA=detB.

A=S-1 BS , detA=det(S-1 BS)= detS-1* detB* detS = 1/detS *detB*detS (сокращаем) = detB.

5)Ранги подобных матриц совпадают.

Собственные векторы и собственные значения матриц.

Число λ называется собственным значением матрицы А, если существует ненулевой вектор Х(матр. столбец) такой, что АХ= λ Х, вектор Х называется собственным вектором матрицы А, а совокупность всех собственных значений называется спектром матрицы А.

Свойства собственных векторов.

1)При умножении собственного вектора на число получим собственный вектор с тем же собственным значением.

АХ= λ Х ; Х≠0

α Х => А(α Х) = α (АХ) = α(λ Х) = = λ (αХ)

2) Собственные векторы с попарно-различными собственными значениями линейно независимы λ1, λ2,.. λк .

λ1 –х1

λ2 – х2

……

Λк - хк

Пусть система состоит из 1-ого вектора, сделаем индуктивный шаг:

С1 Х12 Х2 + .. +Сn Хn = 0 (1) – умножаем на А.

С1 АХ12 АХ2 + .. +Сn АХn = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn = 0

Умножаем на λn+1 и вычтем

С1 Х12 Х2 + .. +Сn Хn+ Сn+1 Хn+1 = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn+ Сn+1 λn+1 Хn+1 = 0

C11 –λn+1 )X1 + C22 –λn+1 )X2 +.. + Cnn –λn+1 )Xn + Cn+1n+1 –λn+1 )Xn+1 = 0

C11 –λn+1 )X1 + C22 –λn+1 )X2 +.. + Cnn –λn+1 )Xn = 0

Надо чтобы С12 =… = Сn = 0

Сn+1 Хn+1 λn+1 =0

Характеристическое уравнение.

А-λЕ называется характеристической матрицей для матрицы А.

Теорема.

Для того, чтобы ненулевой вектор Х был собственным вектором матрицы А, соответствующий собственному значению λ необходимо чтобы он являлся решением однородной системы линейно-алгебраических уравнений (А- λЕ)Х = 0

Нетривиальное решение система имеет тогда, когда det (А- XЕ) = 0 - это характеристическое уравнение.

Утверждение!

Характеристические уравнения подобных матриц совпадают.

det(S-1AS – λЕ) = det(S-1AS – λ S-1ЕS) =det(S-1 (A – λЕ)S) = det S-1 det(A – λЕ) detS= det(A – λЕ)

Характеристический многочлен.

det(A – λЕ)- функция относительно параметра λ

det(A – λЕ) = (-1)n Xn +(-1)n-1(a11+a22+..+annn-1+..+detA

Этот многочлен и называется характеристическим многочленом матрицы А.

Следствие:

1)Если матрицы А~В, то сумма их диагональных элементов совпадает.

a11+a22+..+ann = в1122+..+вnn

2)Множество собственных значений подобных матриц совпадают.

А~В

λi i=1,2..n

Если характеристические уравнения матриц совпадают, то они необязательно подобны.

Для матрицы А

Для матрицы В

(1-λ)2= 0

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]