Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekz_po_vvedeniyu_biologiiiii.docx
Скачиваний:
16
Добавлен:
03.08.2019
Размер:
1.32 Mб
Скачать

Отличия рнк от днк по строению

1) в РНК рибоза вместо дезоксирибозы 2) в РНК нет тимина, вместо него урацил 3) РНК одноцепочечная

  • РНК (рибонуклеиновые кислоты) — нуклеиновые кислоты, линейные полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания — аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). РНК содержатся главным образом в цитоплазме и микросомах животных и растительных клеток. Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах. 

1) Информационная РНК (и-РНК).        Иногда данный биополимер называют матричной РНК (м-РНК). Данный вид РНК располагается как в ядре, так и в цитоплазме клетки. Основное назначение – перенос информации о строении белка от дезоксирибонуклеиновой кислоты к рибосомам, где и происходит сбор белковой молекулы. Относительно небольшая популяция молекул РНК, составляющая менее 1% от всех молекул.  2) Рибосомная РНК (р-РНК).        Самый распространенный вид РНК (около 90% от всех молекул данного вида в клетке). Р-РНК расположена в рибосомах и является матрицей для синтеза белковых молекул. Имеет наибольшие, по сравнению с другими видами РНК, размеры. Молекулярная масса может достигать 1,5 миллионов кДальтон и более. 3) Транспортная РНК (т-РНК).        Расположена, преимущественно, в цитоплазме клетки. Основное назначение- осуществление транспорта (переноса) аминокислот к месту синтеза белка (в рибосомы). Транспортная РНК составляет до 10% от всех молекул РНК, располагающихся в клетке. Имеет наименьше, по сравнению с другими РНК- молекулами, размеры (до 100 нуклеотидов).  4) Минорные (малые) РНК.        Это молекулы РНК, чаще всего с небольшой молекулярной массой, располагающиеся в различных участках клетки (мембране, цитоплазме, органеллах, ядре и т.д.). Их роль до конца не изучена. Доказано, что они могут помогать созреванию рибосомной РНК, участвуют в переносе белков через мембрану клетки, способствуют редупликации молекул ДНК и т.д. 5) Рибозимы.        Недавно выявленный вид РНК, принимающие активное участие в ферментативных процессах клетки в качестве фермента (катализатора). 6) Вирусные РНК.        Любой вирус может содержать только один вид нуклеиновой кислоты: либо ДНК либо РНК. Соответственно, вирусы, имеющие в своём составе молекулу РНК, получили название РНК-содержащие. При попадании в клетку вируса данного типа может происходить процесс обратной транскрипции (образование новых ДНК на базе РНК), и уже вновь образовавшаяся ДНК вируса встраивается в геном клетки и обеспечивает существование, а также размножение возбудителя. Вторым вариантом сценария является образование комплиментарной РНК на матрице поступившей вирусной РНК. В этом случае, образование новых вирусных белков, жизнедеятельность и размножение вируса происходит без участия дезоксирибонуклеиновой кислоты только на основании генетической информации, записанной на вирусной-РНК. 

46. Структура биосферы. Границы биосферы. Лимитирующие факторы биосферы

Биосфера (в современном понимании) - своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.

 Структура биосферы. Биосфера включает в себя: живое вещество, образованное совокупностью организмов; биогенное вещество, которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.); косное вещество, которое формируется без участия живых организмов; биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы). Косное вещество биосферы. Границы биосферы определяются факторами земной среды, которые делают невозможным существование живых организмов. Верхняя граница проходит примерно на высоте 20 км от поверхности планеты и ограничена слоем озона, который задерживает губительные для жизни коротковолновую часть ультрафиолетового излучения Солнца. Таким образом, живые организмы могут существовать втропо сфере и нижних слоях стратосферы. В гидросфере земной коры организмы проникают на всю глубину Мирового океана - до 10-11 км. В литосфере жизнь встречается на глубине 3,5-7,5 км, что обусловлено температурой земных недр и условием проникновения воды в жидком состоянии. Атмосфера. Преобладающие элементы химического состава атмосферы: N2 (78%), O 2 (21%), CO2 (0,03%). Состояние атмосферы оказывает большое влияние на физические, химические и биологические процессы на поверхности Земли и в водной среде. Для биологических процессов наибольшее значение имеют: кислород, используемый для дыхания и минерализации мертвого органического вещества, диоксид углерода, участвующий в фотосинтезе, и озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Азот, диоксид углерода, пары воды образовались в значительной мере благодаря вулканической деятельности, а кислород – в результате фотосинтеза. Гидросфера. Преобладающие элементы химического состава гидросферы: Na+, Mg2+ , Ca2+, Cl-, S, С. Вода - важнейший компонент биосферы и один из необходимых факторов существования живых организмов. Основная ее часть (95%) находится в Мировом океане, который занимает около 70% поверхности земного шара и содержит 1300 млн. км3. Поверхностные воды (озера, реки) включают всего 0,182 млн. км3, а количество воды в живых организмах составляет всего 0,001 млн. км3. Значительные запасы воды (24 млн. км3) содержат ледники. Большое значение имеют газы, растворенные в воде: кислород и диоксид углерода. Их количество широко варьирует от температуры и присутствия живых организмов. Диоксида углерода, содержащегося в воде, в 60 раз больше, чем в атмосфере. Гидросфера формировалась в связи с развитием литосферы, которая в течение геологической истории Земли выделяла большое количество водяного пара. Литосфера. Преобладающие элементы химического состава гидросферы: O, Si, Al, Fe, Ca, Mg, Na, K. Основная масса организмов, обитающих в пределах литосферы, находится в почвенном слое, глубина которого не превышает нескольких метров. Почва включает минеральные вещества, образующиеся при разрушении горных пород, и органические вещества - продукты жизнедеятельности организмов. Живые организмы (живое вещество). Хотя границы биосферы довольно узки, живые организмы в их пределах распределены очень неравномерно. На большой высоте и в глубинах гидросферы и литосферы организмы встречаются относительно редко. Жизнь сосредоточена главным образом на поверхности Земли, в почве и в приповерхностном слое океана. Общую массуживых организмов оценивают в 2,43х1012т. Биомасса организмов, обитающих на суше, на 99,2% представлена зелеными растениями и 0,8% - животными и микроорганизмами. Напротив, в океане на долю растений приходится 6,3%, а на долю животных и микроорганизмов - 93,7% всей биомассы. Жизнь сосредоточена главным образом на суше. Суммарная биомасса океана составляет всего 0,03х10 12 т, или 0,13% биомассы всех существ, обитающих на Земле. В распределении живых организмов по видовому составу наблюдается важная закономерность. Из общего числа видов 21% приходится на растения, но их вклад в общую биомассу составляет 99%. Ср

00:28:32

Границы: Поскольку биосфера - часть геологической оболочки Земли, заселенная живыми организмами, ее границы определяются условиями существования жизни, такими, как достаточное количество воды, минеральных веществ, кислорода, углекислого газа, благоприятный температурный режим, степень солености воды в водоемах, уровень радиации и др.

Верхняя граница биосферы очерчивается озоновым слоем, который своеобразным экраном защищает все живое от губительного воздействия ультрафиолетовой радиации. Нижняя граница очень изрезана: биосфера включает гидросферу суши и Мировой океан, на материках проникает в земную кору в среднем на 3-4 км. Поэтому можно сказать, что биосфера - это часть литосферы, атмосферы и гидросферы, заселенная живым веществом.

Биосфера существовала на протяжении практически всей геологической истории, поэтому нижняя граница биосферы сопрягается с областью "былых биосфер" - так В.И. Вернадский назвал сохранившиеся остатки биосфер прошлых геологических периодов (накопления известняков, углей, горючих сланцев, осадочных пород).

Былые биосферы - документальное доказательство геологически длительного развития биосферы. По последним данным, в горных породах возрастом около 3,5-3,8 млрд лет уже встречаются остатки организмов разных видов и форм, т.е. возраст биосферы сравним с геологическим возрастом планеты.

Живое вещество распределено в биосфере неравномерно: на суше пространства, густо заселенные живыми организмами (тропики и субтропики), чередуются с менее заселенными территориями (холодные области, пустыни, высокогорья и т.п.). В океане наибольшей концентрацией живого вещества характеризуются шельфовые и прибрежные районы. При этом продуктивность приполярных водоемов (Баренцево, Беренгово, Охотское моря) может быть выше чем в экваториальных областях океана. В.И. Вернадский выделял две формы концентрации живого вещества: жизненные пленки, занимающие огромные пространства (планктонная и донная пленки морей и океанов), и сгущения жизни, характерные для небольших территорий (небольшие водоемы, прибрежные отмели, рифы). Для остальной территории биосферы характерно "разрежение живого вещества". Однако это не означает, что в пределах биосферы есть совсем безжизненные пространства. В.И. Вернадский подчеркивал, что способность живого вещества к размножению приводит к распространению, "растеканию" живого вещества по поверхности планеты, обусловливает "всюдность жизни" и постоянное "давление жизни" на косную природу. Живое вещество с мгновенной скоростью захватывает все "незанятые", "оголенные" или временно вышедшие из-под "давления жизни" участки био Ограничивающие факторы биосферы

Биосфера - точка соприкосновения всех «сфер», которые ученые условно выделяют в природе Земли. Сферу жизни пронизывает неиссякаемый поток энергии, идущий как изнутри планеты, так и извне, из космоса. Одно из свойств биосферы - постоянное преобразование веществ, имеющее циклический характер и затрагивающее все компоненты окружающей среды.

Жизнь возможна благодаря наличию определенных факторов. Существуют физико-химические условия, ограничивающие ее распространение за пределы биосферы. Ключевым условием является наличие свободной воды. Это растворитель веществ, необходимых для жизни, основная составляющая всех организмов. Невозможно представить жизнь без воды! Вода, с ее высокой теплоемкостью и способностью переходить из одного агрегатного состояния в другое в земных условиях, является природным регулятором климата, поддерживая температуру в диапазоне, пригодном для жизни (от чуть ниже О °С и до чуть выше 40 °С). Атмосферное давление, равное (в норме) 101325 Па (760 мм рт. ст.), а также оптимальное количество минеральных веществ и света также принадлежат к факторам, решающим образом влияющим на возможность зарождения жизни. Безусловно, существуют организмы, способные выживать в экстремальных температурных, барометрических или световых условиях, но их все же ничтожно мало по сравнению с количеством видов, способных жить в нормальных условиях.

47. Функции живого в биосфере

Функции живого вещества в биосфере. 1. Энергетическая – аккумулирование энергии и ее перераспределение по пищевым цепям. Жизнь возникает в соответствии с принципом Ле Шателье-Брауна, как ответ на рост энтропии, то есть на рассеяние энергии в окружающей среде. Поэтому концентрация энергии - это наиболее естественная функция жизни. Наличие живой оболочки планеты препятствует остыванию ее поверхности, аккумулируя в себе энергию, излучаемую в космос. Правда, сейчас жизнь биосферы развивается в основном в потоке солнечной энергии, аккумулируя ее в себе и препятствуя прямому отражению ее в космос. Эта энергия передается по пищевой цепи от одной формы жизни к другой. По мере этого движения ее энтропия значительно возрастает. В конечном итоге она переходит в тепловую форму и излучается за пределы планеты. Поэтому энтропия излучения, отраженного с поверхности планеты, оказывается существенно больше энтропии излучения, поглощаемого планетой. Именно за счет этой разницы энтропий существует жизнь на планете. Таким образом, основным механизмом накопления энергии в биосфере является реакция фотосинтеза. Имеется также довольно незначительный процент хемосинтезирующих живых существ, чей жизненный цикл опирается на энергию химических соединений. Это разного рода бактерии (железобактерии, серобактерии, азотобактерии и др.). Обнаружены целые экосистемы, функционирование которых основано на активности хемосинтезирующих бактерий и не зависящих от продуктов фотосинтеза. Это глубоководные системы, где в абсолютной темноте вблизи выходов горячей воды, богатой минеральными солями и серой, помимо бактерий существуют и уникальные многоклеточные животные, типа двустворчатых моллюсков длиной около 30 см и трехметровые черви, получающие энергию от хемосинтезирующих бактерий. Возможно, было время, когда такие формы жизни были более разнообразными и заполняли всю поверхность Земли, до которой ввиду интенсивной вулканической деятельности не могли пробиться солнечные лучи. 2. Окислительно-восстановительная – окисление вещества в процессе жизнедеятельности и восстановление в процессе разложения при дефиците кислорода. Наряду с фотосинтезом в зеленых растениях на Земле происходит почти равное ему по масштабу окисление органических веществ в процессе дыхания, брожения, гниения с выделением воды, углекислого газа и теплоты, которая после этого излучается в космическое пространство. Существенно меньшая часть энергии Солнца консервируется в земной коре, или, по словам Вернадского, “уходят в геологию”, формируя залежи каменного угля, нефти, торфа и т.п. Эти процессы связаны с протеканием в бескислородной среде реакций восстановления, сопровождающихся образованием и накоплением сероводорода и метана. 3. Газовая – способность изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. Фотосинтез привел к постепенному уменьшению в атмосфере углекислоты и накоплению кислорода и озона. При этом в развитии биосферы наблюдалось по крайней мере два переломных момента: первая точка Пастера (1.2 млрд лет назад), когда количество кислорода достигло 1 % от современного уровня и появились первые аэробные организмы (живущие только в кислородной среде, в отличие от анаэробных, живущих в бескислородной среде); вторая точка Пастера, когда количество кислорода достигло 10 % от современного уровня , создались условия для синтеза озона и озонового слоя, что защитило организмы от ультрафиолетовых лучей. До этого данную функцию выполняли густые водяные облака. 4. Деструктивная – разрушение погибшей биоорганики и костных веществ. Это один из важнейших элементов круговорота веществ в биосфере, обеспечивающего непрерывность жизни путем превращения сложных органических соединений в минеральные вещества, необходимые для растений, стоящих в самых первых звеньях пищевых цепей. Практически все живые организмы биосферы за исключением растений в той или иной мере являются деструкторами (разрушителями). Однако главная роль в этом процессе принадлежит грибам и бактериям. Л.Пастер назвал бактерии “великими могильщиками природы”. Одновременно жизнь участвует и в разрушении костных веществ (в частности горных пород), доводя их постепенно до состояния, после которого они могут быть вовлечены в круговорот жизни (так измельченные горные породы являются необходимым компонентом почвы). 5. Рассеивающая – рассеяние живого вещества на больших пространствах. Например, рассеяние гемоглобина крови кровососущими или рассеяние органики экскрементов или трупов разного рода деструкторами. 6. Концентрационная – способность организмов концентрировать в своем теле рассеянные элементы окружающей среды. Любое живое существо в процессе своей жизнедеятельности буквально по молекулам собирает из окружающей среды необходимые для него вещества и консервирует их в своей структуре. Поэтому, например, концентрация марганца в теле некоторых организмов превышает его концентрацию в окружающей среде в миллионы раз. В условиях антропогенного загрязнения окружающей среды побочным следствием этого может являться накопление растениями, которые мы потребляем в пищу, веществ, которые являются токсичными для нашего организма. Результатом концентрационной деятельности живых организмов являются залежи руд, известняков, горючих ископаемых и т.п. 7. Транспортная – перенос и перераспределение вещества и энергии. Это является одним из механизмов рассеивающей функции живого вещества. Часто такой перенос осуществляется на громадные расстояния, например, при миграциях и кочевках животных. Это может также способствовать и концентрации элементов среды, достаточно вспомнить птичьи базары. 8. Средообразующая – преобразование физико-химических параметров окружающей среды. В широком смысле результатом данной функции является вся природная среда. Она создана живыми организмами, они же и поддерживают ее в определенном стабильном состоянии. Так состав атмосферы и гидросферы - это продукт жизнедеятельности в биосфере. Живые организмы создали особый тип биокостного вещества - почвы. Коралловые заросли создают в океанах целые острова. Примером могут также служить леса, в которых микроклимат существенно отличается от микроклимата поля. Анализ показывает, что при отсутствии жизни на Земле, условия на ней были бы такими, что по нашим понятиям жизнь на ней была бы попросту невозможной. Ее атмосфера на 98 % состояла бы из углекислого газа (сейчас около 0.03 %), на 1,9 % – из азота (сейчас на Земле 79 % азота, являющегося вопреки своему названию (азот - не поддерживающий жизни) основным элементом при построении аминокислот), кислорода практически не было бы (сейчас 21 %), средняя температура поверхности 290 ± 50оС, не оставляющая никаких шансов на наличие воды в жидком состоянии. Словом, условия весьма похожие на условия планеты Венера. 9. Информационная – накопление информации и закрепление ее в наследственных структурах. Эта функция пока еще мало изучена. Но, по всей видимости, ее важность превосходит все остальные функции живого вещества.

48. Р еализация генетической информации. Принцип ДНК РНК белок.

Реализация генетической информации. Принцип ДНК-> РНК -> белок. Реализа́ция генети́ческой информа́ции — процесс, происходящий внутри каждой живой клетки, во время которого генетическая информация, записанная в ДНК, воплощается в биологически активных веществах — РНК и белках. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов. Представление об этом информационном потоке называется центральной догмой молекулярной биологии. Начальная стадия хранения информации  После окончания клеточного деления, хроматин, который содержит ДНК с генетической информацией находится в так называемом конденсированном состоянии, которое предназначено для того, чтобы в наиболее сохранном виде доставить генетическую информацию из родительской клетки в дочерние. В этом состоянии ДНК находится в максимально компактном состоянии и не работает.  Деконденсация хроматина Когда деление завершено, ДНК должна быть приведена в активизированное состояние. Для этого она разворачивается под управлением специальных белков хроматина. На этой стадии происходит процесс индукции или суппрессии тех или иных генов, когда они могут становиться либо «говорящими» (экспрессируются), либо «молчащими». Одним из проявлений этого процесса является дифференциация клеток.  Транскрипция (переписывание) К развёрнутым участкам ДНК получают доступ специальные ферменты, называемые РНК-полимеразами. ДНК и РНК представляет собой цепочку из звеньев — нуклеотидов. Между нуклеотидами ДНК и РНК существует химическое сродство, что позволяет полимеразе двигаться по ДНК и синтезировать РНК, в точности соответствующую ДНК. Полученная в результате транскрипции РНК называется информационной (иРНК) или матричной (мРНК). Переписываемый участок не бесконечен, а ограничен с обеих сторон специальными ДНК-последовательностями и называется геном. После транскрипции с гена получается соответствующая ему мРНК. Трансляция и транспорт аминокислот Основными органическими веществами всех живых организмов на Земле являются белки, а в основе всех белков лежит двадцать аминокислот. Каждый белок представляет собой цепочку из аминокислотных молекул. Чтобы «прочитать» информацию из созданных на предыдущем этапе мРНК, требуется во-первых, постоянная подача аминокислот, а во-вторых, работа по преобразованию генетического кода в аминокислотный. Дело в том, что каждой аминокислоте соответствует тройка нуклеотидов и это соответствие в достаточной мере произвольно. Поэтому в клетке всегда присутствует 20 видов так называемых транспортных РНК (тРНК), которые с одного конца имеют химическое сродство к некоторой тройке нуклеотидов, а с другого конца специальным ферментом (аминоацил-тРНК-синтетаза) присоединяется соответствующая данной тройке аминокислота. То есть, каждая такая тРНК является адаптором, а набор молекул синтетазы, которых тоже 20 видов — таблицей преобразования генетического кода в аминокислотный. тРНК постоянно «вылавливают» плавающие в цитоплазме клетки аминокислоты и доставляют их к месту синтеза белков — к рибосомам.  Синтез (сборка) белков в рибосомах Рибосомы плавают в цитоплазме клетки и к ним поступают мРНК с информацией из ядра и тРНК с материалом из окружающей цитоплазмы. Рибосома также похожа на застёжку-молнию, только гораздо крупнее РНК-полимеразы и представляет собой целую клеточную органеллу. Во время работы она надевается на цепочку мРНК и скользит по ней. Поступающие в рибосому тРНК соединяются с текущим участком мРНК только в том случае, если ответная часть соответствует закодированной аминокислоте. После этого рибосома получает нужную аминокислоту, отсоединяет её от тРНК и подсоединяет к белковой цепочке, которую она ткёт. Свободная тРНК удаляется, а рибосома переходит к следующей тройке нуклеотидов, после чего процесс повторяется. Оканчивается он тогда, когда будет пройдена вся цепочка мРНК, при этом будет соткан в точности тот белок, который был закодирован в том гене в ДНК, который дал начало всему процессу. 

. 49. Особенности модификационной изменчивости

Модификационная изменчивость - это эволюционно закрепленные реакции организма на изменения условий внешней среды при неизменном генотипе. Такой тип изменчивости имеет две главные особенности. Во- первых, изменения затрагивают большинство или все особи в популяции и у всех них проявляются одинаково. Во-вторых, эти изменения обычно имеют приспособительный характер. Как правило, модификационные изменения не передаются следующему поколению. Классический пример модификационной изменчивости дает растение стрелолист, у которого надводные листья приобретают стреловидную форму, а подводные - лентовидную. 

Если у гималайского кролика на спине удалить белую шерсть и поместить его в холод, на этом месте вырастет черная шерсть. Если черную шерсть удалить и наложить теплую повязку, вырастет белая шерсть. При выращивании гималайского кролика при температуре 30*С вся шерсть у него будет белая. У потомства двух таких белых кроликов, выращенного в нормальных условиях, появится "гималайская", окраска. Такая изменчивость признаков, вызванная действием внешней среды и не передающаяся по наследству, называется модификационной. Примеры модификационной изменчивости приведены на рис. 12 .

Обычно, говоря о модификационных изменениях, имеют в виду морфологические изменения (например, изменение формы листьев) или изменения окраски (некоторые примеры приведены в п. Влияние генотипа и среды на фенотип ). Однако нередко в эту группу включают и физиологические реакции. Регуляция работы генов лактозного оперона кишечной палочки представляет собой пример такой физиологической реакции. Напомним, в чем она состоит. При отсутствии в среде обитания бактерий глюкозы и при наличии лактозы бактерия начинает синтезировать ферменты для переработки этого сахара. Если же в среде появляется глюкоза, эти ферменты исчезают и бактерия возвращается к стандартному обмену веществ.

Другой пример физиологической реакции - увеличение числа эритроцитов в крови у человека, поднявшегося в горы. Когда человек спускается вниз, где содержание кислорода нормально, число эритроцитов возвращается к норме.

В обоих примерах модификационные изменения имеют ясно выраженный приспособительный характер, поэтому их часто называют физиологическими адаптациями.

Большинство модификаций не наследуется. Однако известны и длительные модификационные изменения, сохраняющиеся и в следующем поколении (иногда даже в нескольких поколениях). Каков может быть их механизм? Как могут сохраняться на протяжении нескольких поколений изменения, которые обусловлены воздействием внешней среды, и не связаны с изменениями генотипа?

Рассмотрим один из возможных вариантов механизма такой длительной модификации. Вспомним, что в оперонах бактерий, кроме структурных генов, есть особые участки - промотор и оператор . Оператор - участок ДНК, который находится между промотором и структурными генами. Оператор может быть связан с особым белком - репрессором, который не дает двигаться РНК-полимеразе по цепи ДНК и препятствует синтезу ферментов. Таким образом, гены могут включаться и выключаться в зависимости от наличия в клетке соответствующих белков-репрессоров. Представим себе два таких оперона, у которых один из структурных генов первого оперона кодирует белок-репрессор для второго оперона, а один из структурных генов второго оперона кодирует белок-репрессор для первого оперона ( рис. 123 ). Если включен первый оперон, то заблокирован второй, и наоборот. Такое устройство с двумя состояниями называетсятриггером . Представим себе, что какие-то воздействия внешней среды переключили триггер из первого состояния во второе. Тогда это состояние может наследоваться. В яйцеклетке будут находиться белки-репрессоры, которые не дают триггеру переключаться. Однако при изменении условий среды, проникновении в клетку каких-то веществ, которые уберут белок-репрессор, триггер переключится из второго состояния в первое.

Такой механизм длительной модификации не является придуманным, он существует, например, у некоторых фагов. Если фаги попадают в клетку, где для них мало питательных веществ, они находятся в одном состоянии - не размножаются, а только передаются при делении клетки в дочерние. Если же в клетке возникнут благоприятные условия, фаги начинают размножаться, разрушают клетку-хозяина и выходят из нее в окружающую среду. Переключение фагов из одного состояния в другое осуществляется с помощью молекулярного триггера.

Модификационная изменчивость не затрагивает наследственной основы организма - генотип и поэтому не передается от родителей потомству.

Еще одна особенность модификационной изменчивости - ее групповой характер. Определенный фактор внешней среды вызывает сходное изменение признаков у всех особей данного вида, породы или сорта: под воздействием ультрафиолетовых лучей все люди загорают, все растения белокочанной капусты в жарких странах не образуют кочана. При этом, в отличие от мутаций , модификации направленны, имеют приспособительное значение, происходят закономерно, их можно предсказать. Если листья на деревьях уже распустились, а ночью были заморозки, то утром листья у деревьев примут красноватый оттенок. Если мышей, которые жили на равнинах вблизи гор, переселить в горы, то у них повысится содержание гемоглобина в крови.

Благодаря возникновению модификаций особи непосредственно (адекватно) реагируют на изменение условий среды и лучше приспосабливаются к ней, что дает возможность выжить и оставить потомство.

50. Основные принципы и закономерности в биологии.

Биоло́гия (греч. βιολογία — βίο, био, жизньдр.-греч. λόγος — учениенаука) — наука о жизни (живой природе), одна из естественных наук, объектами которой являются живые существа и их взаимодействие с окружающей средой. Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

В основе современной биологии лежат пять фундаментальных принципов: клеточная теорияэволюциягенетикагомеостаз и энергия[2][

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]