Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Постоянное электростатическоеполе в ваккуме.docx
Скачиваний:
3
Добавлен:
01.08.2019
Размер:
82.67 Кб
Скачать

Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Заряд является количественной характеристикой. Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9×109 H.

Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности[1][2]. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако, такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Закон сохранения заряда и калибровочная инвариантность

Физическая теория утверждает, что каждый закон сохранения основан на соответствующем фундаментальном принципе симметрии. Со свойствами симметрий пространства-времени связаны законы сохранения энергии, импульса и момента импульса. Законы сохранения электрического, барионного и лептонного зарядов связаны не со свойствами пространства-времени, а с симметрией физических законов относительно фазовых преобразований в абстрактном пространстве квантовомеханических операторов и векторов состояний. Заряженные поля в квантовой теории поля описываются комплексной волновой функциейϕ(x) = | ϕ(x) | eiψ(x), где x - пространственно-временная координата. Частицам с противоположными зарядами соответствуют функции поля, различающиеся знаком фазы ψ, которую можно считать угловой координатой в некотором фиктивном двумерном "зарядовом пространстве". Закон сохранения заряда является следствием инвариантности лагранжиана относительно глобального калибровочного преобразования типа ϕ' = eiαQϕ, где Q - заряд частицы, описываемой полем ϕ, а α - произвольное вещественное число, являющееся параметром и не зависящее от пространственно-временных координат частицы. Такие преобразования не меняют модуля функции, поэтому они называются унитарными U(1).[3][4]

[править] Закон сохранения заряда в интегральной форме

Вспомним, что плотность потока электрического заряда есть просто плотность тока. Тот факт, что изменение заряда в объёме равно полному току через поверхность, можно записать в математической форме:

Здесь Ω — некоторая произвольная область в трёхмерном пространстве, — граница этой области, ρ — плотность заряда, плотность тока (плотность потока электрического заряда) через границу.

[править] Закон сохранения заряда в дифференциальной форме

Переходя к бесконечно малому объёму и используя по мере необходимости теорему Стокса можно переписать закон сохранения заряда в локальной дифференциальной форме (уравнение непрерывности)

[править] Закон сохранения заряда в электронике

Правила Кирхгофа для токов напрямую следуют из закона сохранения заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из системы. В правилах Кирхгофа предполагается что электронная система не может значительно изменять свой суммарный заряд.

Зако́н Куло́на — это закон о взаимодействии точечных электрических зарядов.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Важно отметить, что для того, чтобы закон был верен, необходимы:

  1. точечность зарядов — то есть расстояние между заряженными телами много больше их размеров;

  2. их неподвижность. Иначе уже надо учитывать дополнительные эффекты: возникающее магнитное поле движущегося заряда и соответствующую ему дополнительную силу Лоренца, действующую на другой движущийся заряд;

  3. взаимодействие в вакууме.

Однако, с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.

В векторном виде в формулировке Ш.Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; q1, q2 — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — r12); k — коэффициент пропорциональности. Таким образом, закон указывает, что одноименные заряды отталкиваются (а разноименные – притягиваются).

Коэффициент к

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k = 1 и, как правило, опускается.

В СИ k ≈ 8,987551787·109 Н·м2/Кл2 (или Ф-1·м) и записывается следующим образом:

где ε0 ≈ 8.854187817·10−12 Ф/м — электрическая постоянная.

В однородном изотропном веществе в знаменатель формулы добавляется диэлектрическая проницаемость среды ε.

В СГСЭ

В СИ

Электрическое поле

Рассмотренный ранее закон Кулона устанавливает количественные и качественные особенности взаимодействия точечных электрических зарядов в вакууме. Однако этот закон не дает ответа на весьма важный вопрос о механизме взаимодействия зарядов, т.е. посредством чего передается действие одного заряда на другой. Поиск ответа на этот вопрос привел английского физика М. Фарадея к гипотезе о существовании электрического поля, справедливость которой была полностью подтверждена последующими исследованиями. Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот.

Все сказанное позволяет дать следующее определение:

  • электрическое поле – это особый вид материи, посредством которого осуществляется взаимодействие электрических зарядов.

Свойства электрического поля

  • Электрическое поле материально, т.е. существует независимо от наших знаний о нем.

  • Порождается электрическим зарядом: вокруг любого заряженного тела существует электрическое поле.

Поле, созданное неподвижными электрическими зарядами, называется электростатическим.

Электрическое поле может быть создано и переменным магнитным полем. Такое электрическое поле называется вихревым.

  • Обнаружить электрическое поле можно по действию его на электрические заряды с некоторой силой.

  • Электрическое поле распространяется в пространстве с конечной скоростью, равной скорости света в вакууме.

Таким образом, если один из взаимодействующих зарядов переместить в другую точку пространства, то второй заряд почувствует изменение положения первого заряда не мгновенно, а спустя некоторый промежуток времени , где с — скорость света в вакууме, l — расстояние между зарядами.

Напряженность электрического поля

Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства. Электрическое поле обнаруживается по силам, действующим на электрический заряд. Можно утверждать, что мы знаем о поле все, что нужно, если будем знать силу, действующую на любой заряд в любой точке поля. Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.

Для изучения электрического поля будем использовать пробный заряд.

  • Под пробным зарядом будем понимать положительный точечный заряд, не изменяющий изучаемое электрическое поле.

Пусть электрическое поле создается точечным зарядом q0. Если в это поле внести пробный заряд q1, то на него будет действовать сила .

  • Обратите внимание, что в данной теме мы используем два заряда: источник электрического поля q0 и пробный заряд q1. Электрическое поле действует только на пробный заряд q1 и не может действовать на свой источник, т.е. на заряд q0.

Согласно закону Кулона эта сила пропорциональна заряду q1:

.

Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд q1, к этому заряду в любой точке поля:

, -

не зависит от помещенного заряда q1 и может рассматриваться как характеристика поля. Эту силовую характеристику поля называют напряженностью электрического поля.

Подобно силе, напряженность поля – векторная величина, ее обозначают буквой .

  • Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду:

.

  • Сила, действующая на заряд q со стороны электрического поля, равна: .

Если в точке А заряд q > 0, то векторы и направлены в одну и ту же сторону; при q < 0 эти векторы направлены в противоположные стороны.

  • От знака заряда q, на который действует поле, не зависит направление вектора , а зависит направление силы (рис. 1, а, б).

а

б

Рис. 1

  • В СИ напряженность выражается в ньютонах на кулон (Н/Кл).

Значение напряженности электрического поля, созданного:

  • точечным зарядом q, на расстоянии r от заряда в точке C (рис. 2) равно

.

Рис. 2

  • сферой радиуса R с зарядом q, на расстоянии l от центра сферы в точке C (рис. 3), равно

, если lR;

, если l < R.

Рис. 3

  • заряженной бесконечной пластиной с поверхностной плотностью заряда σ, равно

,

где , q – заряд плоскости, S – площадь плоскости.