Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема11(полупроводники).doc
Скачиваний:
4
Добавлен:
19.07.2019
Размер:
450.05 Кб
Скачать

§3. Внутренний фотоэффект. Фотопроводимость

В полупроводнике, находящемся в темноте, при данной температуре имеется некоторое число свободных носителей заряда. Обусловленная ими проводимость называется темновой.

Под действием фотонов с энергией

– в собственном полупроводнике;

– в примесном полупроводнике

образуются избыточные носители заряда.

Явление возникновения свободных носителей тока в полупроводнике под действием света называется внутренним фотоэффектом.

Наименьшая частота νmin, при которой наблюдается внутренний фотоэффект, называется красной границей фотоэффекта.

Эта частота определяется из соотношения:

– для собственного полупроводника; (19)

– для примесного полупроводника. (20)

Возникающие в процессе облучения свободные носители заряда, участвуя в электрическом токе, создают дополнительную проводимость, называемую фотопроводимостью.

Приборы, действие которых основано на явлении фотопроводимости, называются фотосопротивлениями.

Возникающие избыточные свободные носители заряда называются неравновесными.

Наряду с генерацией неравновесных носителей заряда происходит их рекомбинация, поэтому увеличение силы фототока Iф происходит не мгновенно, а в течение некоторого времени. После выключения освещения неравновесные носители заряда рекомбинируют в течение некоторого времени, поэтому сила фототока Iф уменьшается до нуля не мгновенно.

Характерным для каждого полупроводника является среднее время жизни неравновесных носителей заряда τ — оно определяет инерционность фотосопротивлений.

Средним временем жизни неравновесных носителей заряда τ называется время, в течение которого сила фототока Iф уменьшается в е раз.

Временная зависимость фототока Iф = f(t) представлена на рис. 64.

При освещении:

; (21)

при затемнении:

, (22)

где – стационарное значение силы фототока.

§4. p-n переход

Рассмотрим процессы, происходящие на границе контакта полупроводников  p- и n- типа (рис. 65а). Вследствие существования градиента концентрации электроны из полупроводника n-типа будут диффундировать в полупроводник p-типа, образуя диффузионный ток Iдn. Здесь они могут занимать свободное состояние примесного атома (примесный атом приобретет отрицательный заряд). Аналогично дырки из полупроводника p-типа будут диффундировать в полупроводник n-типа, образуя диффузионный ток Iдp. Здесь дырки могут рекомбинировать с несвязанным электроном примесного атома (примесный атом приобретет положительный заряд). В результате области полупроводников, прилегающие к границе, приобретут заряды противоположных знаков (нескомпенсированные заряды неподвижных атомов примеси), как показано на рис. 65б. На границе возникает электрическое поле напряженностью , препятствующее диффузии основных носителей заряда. Контактная разность потенциалов Δφ определяется разностью исходных уровней Ферми. Таким образом, на границе возникает потенциальный барьер высотой (е – заряд электрона), препятствующий переходу дырок из p-полупроводника в n-полупроводник и электронов из n-полупроводника в p-полупроводник (рис. 65в).

Прямое включение p-n перехода (рис. 66)

В этом случае ток через переход обусловлен диффузией основных носителей заряда: дырок в n–полупроводник, – электронов в р–полупроводник. С увеличением напряжения на переходе ширина и высота потенциального барьера на границе полупроводников уменьшается и сила тока возрастает (рис. 66в).

Обратное включение p-n перехода (рис. 67)

В этом случае ток через переход обусловлен дрейфом неосновных носителей заряда: электронов в p–полупроводник, дырок — в n–полупроводник. С увеличением обратного напряжения на переходе сила обратного тока медленно возрастает (рис. 67в).

Применения р-n-перехода: диод, транзистор, солнечная батарея, фотодиод, светодиод, термоэлектрический элемент.

Рассмотрим, например, принцип действия солнечной батареи (рис. 68)

Если на область р-n-перехода направить свет, то электроны будут поглощать фотоны и переходить из валентной зоны в зону проводимости. Образовавшиеся дырки будут выбрасываться электрическим полем р-n-перехода в р-область, а электроны — в n-область. Во внешней цепи потечет ток Iф.