
- •1. Статические и динамические моменты. Механическая характеристика механизма. Ур-е движения.
- •Уравнение движения электроприводов:
- •2. Приведение статических моментов и моментов инерции к валу двигателя.
- •4. Переходные процессы электроприводов. Причины, обуславливающие переходные процессы.
- •5. Торможение асинхронного двигателя.
- •6. Переходные процессы при линейных характеристиках двигателя и механизма.
- •7. Пуск, регулирование скорости и торможения синхронного двигателя.
- •8. Переходные процессы при нелинейных характеристиках двигателя и механизма
- •9. Взаимосвязанный электропривод. Электропривод с механическим соединением валов.
- •10. Потери мощности и энергии в установившемся режиме работы электропривода.
- •41. Схемы замкнутых структур электрического привода
- •45. Дискретные элементы характеризуются частотой циклов преобразования, погрешностями преобразования и временем преобразования, затрачиваемым на один цикл.
- •46. Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения
- •47.Аналоговые элементы и устройства управления эп
- •48. Регулирование координат ад с помощью резисторов
- •49. Датчики скорости и положения, применяющиеся в замкнуты схемах управления.
- •50. Расчет резисторов в цепи статора. Рассмотрим наиболее распространенную задачу, когда включение добавочного резистора во все три
- •51. Следящий электропривод.
- •52.Расчет регулировочных резисторов в цепи ротора асинхронного двигателя.
- •54. Замкнутые электроприводы с подчиненным регулированием координат..
- •55.Замкнутые схемы управления эп с дпт с обратными связями по скорости и току.
50. Расчет резисторов в цепи статора. Рассмотрим наиболее распространенную задачу, когда включение добавочного резистора во все три
фазы статора (симметричная схема) должно обеспечить заданную кратность пускового тока
или
момента
где I1п.и
,I1пе
и
Мпи
,
Мпе
-
соответственно
пусковые токи и моменты АД
при
включении добавочного резистора и без
него.
Воспользуемся для расчета методикой, приведенной в [3], для чего введем понятия полного комплексного сопротивления короткого замыкания z , соответствующего моменту пуска АД:
(5.17)
а также активного г% и реактивного хк сопротивлений короткого замыкания, определяемых по формулам
(5.18)
(519)
где cos фп - коэффициент мощности АД в момент его пуска.
Тогда для получения заданных кратностей пусковых тока а или момента п. требуемое сопротивление добавочного резистора определим по формулам
(5.20)
(5/21)
Основная трудность при использовании формул (5.18) ... (5.21) состоит в определении cos фп = cos фкз, значение которого обычно не приводится в справочниках и каталогах. На рис. 5.8 приведены усредненные зависимости коэффициента мощности асинхронных двигателей от их номинальной мощности в режиме короткого замыкания (пуска), рассчитанные по паспортным данным двигателей серий 4А (кривая 2), и МТК (кривая 1) для различных скоростей вращения. Приближенно для серии двигателей 4А с ко-роткозамкнутым ротором можно принять cos фп = 0,3...0,5, а для АД серий MTF и МТН cos фп = 0,6... 0,7.
В [3] приведен также метод расчета добавочного резистора, включаемого в одну фазу статора (несимметричная схема), с целью получения заданных пусковых тока и моме
51. Следящий электропривод.
Следящий электропривод, следящая система, обеспечивающая воспроизведение некоторых механических перемещений на управляемом объекте посредством исполнительного электродвигателя (ИЭ). Следящий электропривод включает в себя задающее устройство, измерительный преобразователь, орган сравнения, усилитель и ИЭ. Задающее устройство вырабатывает исходный сигнал (изменяющийся, как правило, по произвольному закону). Измерительный преобразователь непрерывно измеряет фактическое значение воспроизводимой величины на управляемом объекте, которое при помощи органа сравнения сопоставляется с заданным. Обычно измерительный преобразователь и орган сравнения объединены в одном устройстве, вырабатывающем электрический сигнал рассогласования (СР), пропорциональный разности между заданным и фактическими значениями воспроизводимой величины. СР (в виде напряжения или тока) поступает на вход усилителя, а затем на ИЭ, осуществляющий такое движение управляемого объекта, при котором СР уменьшается. В отсутствие СР ротор электродвигателя находится в покое.
Различают Следящий электропривод с непрерывным и дискретным управлением. Особенностью первого является непрерывное регулирование напряжения (мощности) ИЭ в функции СР. В простейшем случае эта зависимость линейна. Следящий электропривод с дискретным управлением подразделяются на релейные и импульсные. В релейных Следящий электропривод в качестве усилителя используют бесконтактные реле, которые при определённой величине СР включают ИЭ на полную мощность. В импульсных Следящий электропривод включение ИЭ осуществляется периодически, через определённые (равные) промежутки времени управляющими импульсами тока, амплитуда, длительность или частота которых являются функцией СР.
В большинстве Следящий электропривод задаваемой величиной является угол поворота входного вала, а регулируемой — угол поворота выходного вала, с которым связан управляемый объект. В качестве измерительных преобразователей наибольшее распространение в таких устройствах получили потенциометры и индукционные машины переменного тока типа сельсинов или поворотных трансформаторов. Следящий электропривод находят применение в различных системах управления, передачи информации и измерения.