
- •Вопрос №2. Основные законы химии: сохранения массы и энергии, постоянство состава, эквивалентов и Авогадро.
- •Закон постоянства состава с современной точки зрения. Соединения постоянного и переменного состава.
- •Закон эквивалентов. Эквивалент элементов и соединений.
- •Вопрос №3. Классы неорганических соединений.
- •Вопрос №4. Модель строения атома Резерфорда.
- •Теория строения атома Бора. Недостатки теории Бора.
- •Вопрос №5. Принцип квантовой механики: дискретность энергии, корпускулярноволновой дуализм, принципы неопределенности Гейзенберга.
- •Понятие электронного уровня, подуровня, орбитали.
- •Правила и принципы, определяющие последовательность формирования электронных уровня и подуровня.
- •Вопрос №10. S-, p-, d-, f- элементы. Взаимосвязи между электронным строением, химическими свойствами и положениями в Периодической системе.
- •Вопрос №7,8. Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •Вопрос №7. Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •Вопрос №8. Полярность ковалентной связи. Дипольный момент.
- •Вопрос №8. Достоинства и недостатки метода вс.
- •Вопрос №8. Метод молекулярных орбиталей. Основные понятия.
- •Вопрос №9. Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •10. Периодический закон д.И. Менделеева. Периодичность в изменении различных свойств элементов (потенциал ионизации, сродство к электрону, атомные радиусы и т.Д.).
- •Вопрос №?. Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •Вопрос №?. Водородная связь.
- •Вопрос №?. Основные типы кристаллических решеток. Особенности каждого типа.
- •Вопрос №12,13. Законы термохимии. Следствия из законов Гесса.
- •1 Закон термодинамики: все подводимое к системе тепло расходуется на изменение внутренней энергии и работу, которую совершает система.
- •Вопрос №13. Понятие о внутренней энергии системы, энтальпии и энтропии.
- •1 Закон термодинамики: все подводимое к системе тепло расходуется на изменение внутренней энергии и работу, которую совершает система.
- •Вопрос №15. Энергия Гиббса, ее взаимосвязь с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •Вопрос №16,17. Скорость химических реакций. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •Вопрос №18. Обратимые процессы. Химическое равновесие. Константа равновесия.
- •Влияние различных факторов на смещение равновесия. Принцип ЛеШателье.
- •Вопрос №19. Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.
- •Вопрос №20. Способы выражения концентрации растворов.
- •Вопрос №21. Закон Рауля.
- •Вопрос №22. Осмос. Осмотическое давление. Закон Вант-Гоффа.
- •Вопрос №23. Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотонический коэффициент.
- •Вопрос №24. Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •Вопрос №25. Ионное произведение воды. Водородный показатель как химическая характеристика раствора.
- •Вопрос №26. Реакция в растворах электролитов, их направленность. Смещение ионных равновесий.
- •Вопрос №27,29 Гидролиз солей, его зависимость от температуры, разбавления и природы солей (три типичных случая). Константа гидролиза. Практическое значение в процессах коррозии металла.
- •Вопрос №32. Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нернста.
- •Вопрос №33. Взаимодействие металлов с кислотами и щелочами.
- •Вопрос №35. Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •Вопрос №?. Гальванические элементы. Процессы на электродах. Эдс гальванического элемента.
- •Вопрос №36. Обратимые источники электрической энергии. Кислотные и щелочные аккумуляторы.
- •Вопрос №?. Топливные элементы.
- •Вопрос №37. Электролиз растворов и расплавов. Последовательность электродных процессов. Перенапряжение и поляризация.
- •Вопрос №? Применение электролиза в промышленности.
- •Вопрос №38. Электрохимическая коррозия металлов. Основные виды электрохимической коррозии. Процессы на электродах.
- •Вопрос №39. Методы борьбы с коррозией.
Теория строения атома Бора. Недостатки теории Бора.
В своей теории Бор исходил из планетарной модели атома. Основываясь на положении квантовой теории света о прерывистой, дискретной природе излучения и на линейчатом характере атомных спектров, он сделал вывод, что энергия электронов в атоме не может меняться непрерывно, а изменяется скачками, т.е. дискретно. Поэтому в атоме возможны не любые энергетические состояния электронов, а лишь определенные. Иначе говоря, энергетические состояния электронов в атоме квантованы. Переход из одного разрешенного состояния в другое осуществляется скачкообразно и сопровождается испусканием или поглощением кванта электромагнитного излучения. Основные положения своей теории Бор сформулировал в виде постулатов (утверждение, принимаемое без доказательства)
-
Электрон может вращаться вокруг ядра только по определенным (стационарным) круговым орбитам. Двигаясь по стационарной орбите, электрон не излучает и не поглощает энергию.
-
Излучение или поглощение энергии происходит при переходе электрона с одной стационарной орбиты на другую.
Стационарными являются те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка: mvr=nh/2π.
Постулаты Бора находились в резком противоречии с положениями классической физики. С точки зрения классической механики электрон может вращаться по любым орбитам, а классическая электродинамика не допускает движения заряженной частицы по круговой орбите без излучения. Но эти постулаты нашли свое оправдание в результатах, полученных Бором при расчете спектра атома водорода. Теория Бора объяснила физическую природу атомных спектров как результата перехода атомных электронов с одних стационарных орбит на другие.
Переход электрона на уровень с большей энергией возможен, если энергия поглотится атомом. Частота излучения связана с энергией, поглощенной или излученной при электронном переходе. Таким образом, модель строения атома по
Бору успешно объяснила появление линейчатого спектра и наличие серий в видимой части спектра испускания атомов водорода. При этом оказалось, что эти линии соответствуют переходу электрона с более удаленных орбит на вторую от ядра орбиту. Бор не ограничился объявлением уже известных свойств спектра водорода, но на основе своей теории предсказал существование и местоположение неизвестных в то время спектральных серий водорода, находящихся в ультрафиолетовом и инфракрасной областях спектра и связанных с переходом электрона на ближайшую к ядру орбиту и орбиты, более удаленные от ядра, чем вторая. Все это было впоследствии экспериментально подтверждено.
Оставался ряд невыясненных вопросов, связанных с постулатами Бора. Где находится электрон в процессе перехода с одной орбиты на другую? Как вытекает из теории относительности, ни один физический процесс не может распространяться со скоростью, превышающей скорость света. Поэтому переход на новую орбиту не совершается мгновенно, а длится некоторое время. В течение этого времени электрон должен находиться где-то в промежутке между исходной и конечной орбитой, но такие промежуточные состояния запрещаются теорией.
Также теория не смогла объяснить некоторых важных спектральных характеристик многоэлектронных атомов и даже атома водорода. Например, оставалась неясной причина различной интенсивности линий в атомном спектре водорода; не объяснялась тонкая структура спектров атомов, заключающаяся в том, что их отдельные линии расщепляются на несколько других. Сами количественные расчеты многоэлектронных атомов оказались чрезвычайно сложными и практически неосуществимыми. Теория ошибочно описывала магнитные свойства атома водорода, принципиально не могла объяснить образование химической связи в молекулах.