
- •Вопрос №2. Основные законы химии: сохранения массы и энергии, постоянство состава, эквивалентов и Авогадро.
- •Закон постоянства состава с современной точки зрения. Соединения постоянного и переменного состава.
- •Закон эквивалентов. Эквивалент элементов и соединений.
- •Вопрос №3. Классы неорганических соединений.
- •Вопрос №4. Модель строения атома Резерфорда.
- •Теория строения атома Бора. Недостатки теории Бора.
- •Вопрос №5. Принцип квантовой механики: дискретность энергии, корпускулярноволновой дуализм, принципы неопределенности Гейзенберга.
- •Понятие электронного уровня, подуровня, орбитали.
- •Правила и принципы, определяющие последовательность формирования электронных уровня и подуровня.
- •Вопрос №10. S-, p-, d-, f- элементы. Взаимосвязи между электронным строением, химическими свойствами и положениями в Периодической системе.
- •Вопрос №7,8. Химическая связь. Виды химической связи. Энергетические и геометрические характеристики связи.
- •Вопрос №7. Природа химической связи. Энергетические эффекты в процессе образования химической связи.
- •Вопрос №8. Полярность ковалентной связи. Дипольный момент.
- •Вопрос №8. Достоинства и недостатки метода вс.
- •Вопрос №8. Метод молекулярных орбиталей. Основные понятия.
- •Вопрос №9. Межмолекулярное взаимодействие. Ориентационный, индукционный и дисперсионный эффекты.
- •10. Периодический закон д.И. Менделеева. Периодичность в изменении различных свойств элементов (потенциал ионизации, сродство к электрону, атомные радиусы и т.Д.).
- •Вопрос №?. Металлическая связь. Особенности. Элементы зонной теории для объяснения особенностей металлической связи.
- •Вопрос №?. Водородная связь.
- •Вопрос №?. Основные типы кристаллических решеток. Особенности каждого типа.
- •Вопрос №12,13. Законы термохимии. Следствия из законов Гесса.
- •1 Закон термодинамики: все подводимое к системе тепло расходуется на изменение внутренней энергии и работу, которую совершает система.
- •Вопрос №13. Понятие о внутренней энергии системы, энтальпии и энтропии.
- •1 Закон термодинамики: все подводимое к системе тепло расходуется на изменение внутренней энергии и работу, которую совершает система.
- •Вопрос №15. Энергия Гиббса, ее взаимосвязь с энтальпией и энтропией. Изменение энергии Гиббса в самопроизвольно протекающих процессах.
- •Вопрос №16,17. Скорость химических реакций. Закон действия масс для гомогенных и гетерогенных реакций. Сущность константы скорости. Порядок и молекулярность реакции.
- •Влияние катализатора на скорость химических реакций. Причины влияния катализатора.
- •Особенности протекания гетерогенных реакций. Влияние диффузии и степень дискретности вещества.
- •Вопрос №18. Обратимые процессы. Химическое равновесие. Константа равновесия.
- •Влияние различных факторов на смещение равновесия. Принцип ЛеШателье.
- •Вопрос №19. Определение раствора. Физико-химические процессы при образовании растворов. Изменение энтальпии и энтропии при растворении.
- •Вопрос №20. Способы выражения концентрации растворов.
- •Вопрос №21. Закон Рауля.
- •Вопрос №22. Осмос. Осмотическое давление. Закон Вант-Гоффа.
- •Вопрос №23. Растворы электролитов. Сильные и слабые электролиты. Степень электролитической диссоциации. Изотонический коэффициент.
- •Вопрос №24. Гетерогенные равновесия в растворах электролитов. Произведение растворимости.
- •Вопрос №25. Ионное произведение воды. Водородный показатель как химическая характеристика раствора.
- •Вопрос №26. Реакция в растворах электролитов, их направленность. Смещение ионных равновесий.
- •Вопрос №27,29 Гидролиз солей, его зависимость от температуры, разбавления и природы солей (три типичных случая). Константа гидролиза. Практическое значение в процессах коррозии металла.
- •Вопрос №32. Зависимость электродного потенциала от природы веществ, температуры и концентрации раствора. Формула Нернста.
- •Вопрос №33. Взаимодействие металлов с кислотами и щелочами.
- •Вопрос №35. Химическое равновесие на границе металл-раствор. Двойной электрический слой. Скачок потенциала. Водородный электрод сравнения. Ряд стандартных электродных потенциалов.
- •Вопрос №?. Гальванические элементы. Процессы на электродах. Эдс гальванического элемента.
- •Вопрос №36. Обратимые источники электрической энергии. Кислотные и щелочные аккумуляторы.
- •Вопрос №?. Топливные элементы.
- •Вопрос №37. Электролиз растворов и расплавов. Последовательность электродных процессов. Перенапряжение и поляризация.
- •Вопрос №? Применение электролиза в промышленности.
- •Вопрос №38. Электрохимическая коррозия металлов. Основные виды электрохимической коррозии. Процессы на электродах.
- •Вопрос №39. Методы борьбы с коррозией.
Вопрос №4. Модель строения атома Резерфорда.
Одна из первых моделей строения атома была предложена Томсоном в 1903 г. Атом представлялся положительно заряженной сферой с вкраплениями электронов, суммарный отрицательный заряд электронов приравнивался к заряду сферы.
Для проверки гипотезы Томсона и более точного определения строения атома Резерфорд провел серию опытов по рассеиванию альфа-частиц тонкими металлическими пластинками. Источник альфа-излучения помещали в свинцовый кубик с просверленным в нем каналом, так что удавалось получить поток альфа-частиц, летящих в определенном направлении. Попадая на экран, покрытый сульфидом цинка, альфа-частицы вызывали его свечение, причем в лупу можно было увидеть и подсчитать отдельные вспышки, возникающие на экране при попадании на него альфа-частицы. Между источником излучения и экраном помещали фольгу. По вспышкам на экране можно было судить о рассеянии альфа-частиц, т.е. об их отклонении от первоначального направления при прохождении через слой металла.
Оказалось, что большинство альфа-частиц проходит через фольгу, не изменяя своего направления, хотя толщина фольги соответствовала сотням тысяч атомных диаметров. Но некоторая доля альфа-частиц все же отклонялась на небольшие углы, а изредка альфачастицы резко изменяли направление своего движения и даже отбрасывались назад, как бы натолкнувшись на массивное препятствие. Случаи такого резкого отклонения альфачастиц можно было наблюдать, перемещая экран с лупой по дуге.
Из результатов опыта следовало, что подавляющая часть пространства, занимаемого атомом металла, не содержит тяжелых частиц – там могут размещаться только электроны. Ведь масса электрона много меньше массы альфа-частицы, так что столкновение с электроном практически не может повлиять на направление движения альфа-частицы. Случаи же резкого отклонения и даже отбрасывания альфа-частиц означают, что в атоме есть какое-то тяжелое ядро, в котором сосредоточена преобладающая часть всей массы атома. Это ядро занимает очень маленький объем (поэтому частицы так редко с ним сталкиваются) и обладает положительным зарядом, который и вызывает отталкивание одноименно заряженных альфа-частиц.
Результаты опыта Резерфорд объяснил, предложив «планетарную» модель атома, уподоблявшую его солнечной системе. Согласно этой модели в центре атома находится очень маленькое ядро, заключающее в себе почти всю массу атома и несущее положительных заряд. Вокруг ядра движутся электроны, число которых определяется зарядом ядра.
Недостатком планетарной модели была её несовместимость с законами классической физики. Если электроны движутся вокруг ядра как планеты вокруг Солнца, то их движение ускоренное, и, следовательно, по законам классической электродинамики они должны были бы излучать электромагнитные волны, терять энергию и падать на ядро.
Это противоречит реальным свойствам атомов, которые представляют собой устойчивые образования. Бор берет за основу «планетарную» модель атома, формулируя постулаты:
-
Электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным круговым орбитам. Эти орбиты получили название стационарных. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка mvr=nh/2π. Двигаясь по стационарной орбите электрон не излучает и не поглощает энергию.
-
Излучение или поглощение энергии происходит при скачкообразном переходе электрона с одной стационарной орбиты на другую. При этом испускается или поглощается квант электромагнитного излучения, энергия которого равна разности энергии атома в конечном и исходном состояниях.