Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мед. физика Лекция 6.doc
Скачиваний:
41
Добавлен:
11.07.2019
Размер:
231.42 Кб
Скачать

Активный транспорт. Опыт Уссинга

Наряду с пассивным транспортом в мембранах клетки проис­ходит перенос молекул в область большей концентрации, а ионов — против силы, действующей на них со стороны электрического по­ля. Такая разновидность переноса поручила название активного транспорта. Если пассивный транспорт может происходить в любых полупроницаемых мембранах, как биологических, так и искусственных, то активный транспорт присущ только биологическим мембранам. Благодаря активному транспорту сохраняет­ся пространственная неоднородность в клетке (отличие внутри­клеточной среды от внеклеточного пространства), создаются и поддерживаются градиенты концентраций, электрических потен­циалов и т. д. Активный перенос веществ через мембрану осу­ществляется за счет энергии гидролиза молекул (АТФ).

Согласно современным представлениям, в биологических мембранах имеются

ионные насосы — специальные системы интегральных белков (транспортные АТФазы). Известны четыре вида ионных насосов, три из которых обеспечивают перенос ионов N К+, Са2+ и Н+ через мембраны за счет энергии гидролиза АТФ. Механизм переноса протонов при работе дыхательной цепи митохондрий изучен менее всего.

Натрий-калиевый насос работает при условии сопряжения переноса ионов калия и натрия. Это означает, что если во внешней среде нет ионов калия, не будет активного переноса ионов натрия из клетки, и наоборот. Другими словами, ионы натрия активируют натрий -калиевый насос на внутренней поверхности клеточной мембраны, а ионы калия — на внешней.

Натрий-калиевый насос переносит из клетки во внешнюю среду три иона натрия в обмен на перенос двух ионов калия внутрь клетки. Один акт переноса требует затраты энергии од молекулы АТФ. При этом создается и поддерживается разность потенциалов на мембране, причем внутренняя часть клетки имеет отрицательный заряд.

Надо отметить, что существует также активный перенос сахаров аминокислот, нуклеотидов, но кинетика этих процессов достаточно хорошо не изучена.

Интересно, что до сих пор нет достоверных сведений об активном транспорте анионов, хотя они играют важную роль в жизнедеятельности клеток (в особенности и хлора). По-видимому, анионы попадают в клетку путем пассивного переноса.

Равновесный и стационарный мембранные потенциалы. Потенциал покоя

Опыты Л. Гальвани и А. Вольта во второй половине XVIII в. привели к пониманию того, что функционирование живых тка­ней сопровождается электрическими явлениями. В настоящее время неоспоримым является тот факт, что генерация и распрост­ранение электрических потенциалов — это важнейшее физиче­ское явление в живых клетках и тканях.

Биопотенциалом называют разность электрических потенциа­лов, образующуюся между двумя точками клеток, тканей и орга­нов в процессе их жизнедеятельности. Биопотенциалы отражают функциональное состояние клеток и тканей. Поэтому их регист­рация и анализ являются важным приемом при физиологических исследованиях и в диагностике.

Между двумя сторонами мембраны образуется разность потенциалов, которая уравновешивает кон­центрационный градиент ионов, способных к диффузии. Мембранная разность потенциалов рассчитывается по формуле Нернста:

Здесь с1 и с2 – молярные концентрации ионов по обе стороны мембраны, R — универсальная газовая постоянная, Т — термоди­намическая температура, при которой происходит диффузия, F — постоянная Фарадея, Z — заряд иона. Эту разность потенциалов называют равновесным мембранным потенциалом. Мембран­ная теория происхождения биопотенциалов была выдвинута в 1902 г. Б. Бернштейном. Действительно, в живой клетке кон­центрация ионов калия значительно больше, чем в межклеточной жидкости, и крупные органические молекулы практически не проникают через мембрану. Важным доводом в пользу представ­лений Бернштейна послужил тот факт, что рассчитанная по фор­муле Нернста разность потенциалов между наружной и внутрен­ней сторонами мембраны мышечного волокна оказалась близкой к измеренной в опытах с помощью внутриклеточного микро­электрода.

В настоящее время общепризнанной теорией, объясняющей возникновение и поддержание потенциала на клеточной мембране в состоянии физиологического покоя, является теория А. Ходжкина. Она была развита и экспериментально обоснована им в 50-х гг. XX в. Сущность ее заключается в том, что потенциал, существую­щий на мембранах невозбужденных клеток (потенциал покоя), обусловлен полупроницаемыми свойствами клеточной мембраны и неравномерным распределением ионов между клеткой и окру­жающей средой. Это распределение поддерживается механизмами активного переноса, локализованными в самой мембране.